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Testing large 
systems is a 

daunting task, 
but there 

are steps we 
can take to 

ease the pain.

T
he increasing size and complexity of software, coupled with concurrency and dis-
tributed systems, has made apparent the ineffectiveness of using only handcrafted 
tests. The misuse of code coverage and avoidance of random testing has exacer-
bated the problem. We must start again, beginning with good design (including 

dependency analysis), good static checking (including model property checking), and 
good unit testing (including good input selection). Code coverage can help select and 
prioritize tests to make you more effi cient, as can the all-pairs technique for controlling 
the number of confi gurations. Finally, testers can use models to generate test coverage 
and good stochastic tests, and to act as test oracles.

HANDCRAFTED TESTS OUTPACED BY HARDWARE AND SOFTWARE
Hardware advances have followed Moore’s law for years, giving the capability for run-
ning ever-more complex software on the same cost platform. Developers have taken 
advantage of this by raising their level of abstraction from assembly to fi rst-generation 
compiled languages to managed code such as C# and Java, and rapid application devel-
opment environments such as Visual Basic. Although the number of lines of code per 
day per programmer appears to remain relatively fi xed, the power of each line of code 
has increased, allowing complex systems to be built. Moore’s law provides double the 
computing power every 18 months and software code size tends to double every seven 
years, but software testing does not appear to be keeping pace.
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Unfortunately, the increased power has not, in gen-
eral, made testing easier. While in a few cases the more 
powerful hardware means we can do more complete test-
ing, in general the testing problem is getting worse. You 
can test square root for all the 32-bit values in a reason-
able time,1,2 but we are now moving to 64-bit machines 
with 64-bit values (and even longer for fl oating point). 
Assuming a nanosecond per test case, it would take 584 
years to test all the values. Sure, you could scale to, say, 
1,000 processors, but you would still need six months for 
just this one test case. 

Two other issues of complexity to consider are: the 
number of different execution states software can go 
through, and concurrency. User interfaces were originally 
very rigid, letting users progress through a single fi xed 
set of operations—for example, a single set of hierarchi-
cal menus and prompts. Now, good user design is event 
driven with the user in control of the sequence of actions. 
Further, many actions can be accomplished in multiple 
manners (e.g., closing a window via the menu [File/
Close], a shortcut key [ALT-F4], or the mouse [click on the 
Close icon]). Multiple rep-
resentations of items (e.g., 
fi le names) also generally 
mean multiple execution 
paths. A manifestation of 
this is the security issue 
that occurs when an 
application makes wrong 
decisions based on a non-
canonical representation 
of a name.3 These explo-
sive combinations make 

it virtually impossible for a tester to both conceive of and 
then test a reasonable sampling of all the combinations.

Concurrency is becoming more prevalent at many 
levels. Beyond multiple processes, we see increasing 
lower-level concurrency, especially as a result of multicore 
chipsets that encourage parallelism via threading and 
hyperthreading; soon, everyone will have a dual-proces-
sor machine. Machine clustering and Web services are 
increasing the concurrency across applications. 

All of this creates greater possibilities for more insidi-
ous bugs to be introduced, while making them harder to 
detect. 

MISUNDERSTANDING CODE COVERAGE 
AND STOCHASTIC TESTING
Before discussing possible approaches to these problems, 
let’s clear up some pervasive misconceptions. 

Myth: Code coverage means quality. Tools for measur-
ing structural code coverage have become increasingly 
easy to use and deploy and have thus deservedly gained 
greater acceptance in the testing arsenal. A fundamental 
fl aw made by many organizations (especially by manage-
ment, which measures by numbers) is to presume that 
because low code-coverage measures indicate poor test-
ing, or that because good sets of tests have high coverage, 
high coverage therefore implies good testing (see Logical 
Fallacies sidebar). Code coverage merely measures that a 
statement, block, or branch has been exercised. It gives 
no measure of whether the exercised code behaved cor-
rectly. As code gets too big to easily roll up qualitative 
assessments, people start summarizing code coverage 
instead of test information. Thus, we know low code cov-
erage is bad, because if we have never exercised the code, 
it appears impossible to say we have “tested” it. However, 
while having something that just executes the code may 
consequently reveal a few possible fl aws (e.g., a complete 
system failure), it doesn’t really indicate if the code has 
been what most people consider tested. 

BIG
TO TEST

TOO DARNED

Quality 
AssuranceFO

CU
S

Logical Fallacies

Denying the Antecedent: 
If A, then B; not A; therefore, not B

If low coverage, then poor tests; not low coverage; therefore, not poor tests
Asserting the Consequent: 
If p, then q; q; therefore, p

If good tests, then high coverage; high coverage; therefore, good tests
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Tested indicates you have verified the results of the 
code execution in useful ways. The fallacy of high code 
coverage will become more evident with the next genera-
tion of automatic unit testing tools (discussed later) that 
can generate high code coverage with no results checking. 
Further, results of real software comparing code coverage 
and defect density (defects per kilo-lines of code) show 
that using coverage measures alone as predictors of defect 
density (software quality/reliability) is not accurate.

Myth: Random testing is bad. One of the big debates 
in testing is partitioned (typically handcrafted) test design 
versus operational, profile-based stochastic testing (a 
method of random testing). Whereas many organiza-
tions today still perform testing (such as choosing the 
partitions) as a craft (either manually or semi-automati-
cally), it is unclear that this is the most effective method, 
especially with the increasing complexity of software. 
Current evidence indicates that unless you have reliable 
knowledge about areas of increased fault likelihood, then 
random testing can do as well as handcrafted tests.4,5 

For example, a recent academic study with fault seed-
ing showed that under some circumstance the all-pairs 
testing technique (see “Choose configuration interactions 
with all-pairs” later in this article) applied to function 
parameters was no better than random testing at detect-
ing faults.6

The real difficulty in doing random testing (like the 
problem with coverage) is verifying the result. How, for 
random inputs, can we judge the output? It is easier to 
have static tests with precomputed outputs. In testing, 
being able to verify the output is called the test oracle 
problem.7,8 There are numerous current areas of work on 
this problem.

Another problem is that very low probability sub–
domains are likely to be disregarded by random testing, 
but if the cost of failures in those subdomains is very 
high, they could have a large impact. This is a major flaw 
of random testing and a good reason for using it as a 
complementary rather than the sole testing strategy. 

Part of the testing discipline is to understand where 
we have reliable knowledge of increased fault likelihood. 
The classic boundary value analysis technique succeeds 
because off-by-one errors increase the fault likelihood at 
boundaries. Many other analysis techniques have a less 
tried-and-true underlying fault model to reliably indi-
cate increased fault likelihood. For example, partitioning 
based on code coverage doesn’t guarantee finding the 
fault, as the right input must be used to stimulate the 
fault and sufficient verification must be done to realize 
the fault has produced a failure.  

TEST ISSUES: DO OVER
It’s clear that increasing structural code coverage doesn’t 
solve the testing problem and that stochastic testing is 
frequently as good as or better than handcrafted test 
cases. Given this state of affairs, how do we address the 
issue of “it’s too darned big to test”? There are several 
approaches to consider: unit testing, design, static check-
ing, and concurrency testing.

Good unit testing (including good input selection). 
Getting high-quality units before integration is the first 
key to making big system testing tractable. The simple 
way to do that is to follow the decades-old recommenda-
tion of starting with good unit testing. The IEEE Standard 
for Software Unit Testing has been around for years [Std. 
1008-1987] and requires 100 percent statement cover-
age. This has been nicely reincarnated via the test-driven 
development movement, which also espouses the previ-
ously seldom-adhered-to idea of writing the tests before 
the code. Testing a big system is especially difficult when 
the underlying components and units are of low quality. 

Why isn’t good unit testing prevalent? In many shops 
the problem is partly cultural. Software developers pre-
sumed someone else was responsible for testing besides 
them. Some development groups have spent more effort 
building out stubbed components and test harnesses than 
on building the actual components. Standard unit testing 
harnesses now exist for many environments, and the 
creation of mock objects is becoming semi-automated. 
Another reason for poor unit testing is that software was 
once simpler and reliability expectations lower. In today’s 
world insecure systems arising from simple problems (for 
example, buffer overruns) that good unit testing could 
have caught have really motivated management to drive 
for better unit testing.

A variety of tools exist in this arena. Unit testing 
frameworks include the XUnit family of tools, Framework 
for Integrated Test (Ward Cunningham’s Fit), Team Share, 
etc. Further, IDEs (integrated development environments) 
such as Eclipse and Rational can generate unit test out-
lines. Any development shop should be able to find and 
use applicable ones.

In general, today’s unit testing requires developers to 
handcraft each test case by defining the input and the 
expected output. In the future, more intelligent tools will 
be able to create good input coverage test cases and some 
expected output. We may see 100 percent code coverage, 
with no results checking. We will need to become more 
aware of the thoroughness of results checking instead 
of just code coverage. How to measure results-checking 
thoroughness hasn’t really been addressed.
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Current automatic unit-generation test techniques 
work from the simple known failure modes (such as null 
parameters as inputs) to analysis of the data structures 
used. Data-structure generation can be based on con-
straint solvers, models, and symbolic execution.

Other tools can enhance an existing set of tests. For 
example, Eclat creates an approximate test oracle from a 
test suite, then uses that oracle to aid in generating test 
inputs that are likely to reveal bugs or expose new behav-
ior while ignoring those that are invalid inputs or that 
exercise already-tested functionality.

Even without tools, just training people in simple 
functional test techniques can help them choose bet-
ter inputs for their unit testing. You can also start with 
generic checklists of things to test and then make them 
your own by recording your organization’s history of 
what makes interesting input. You can fi nd industry 
checklists in several books under different names such 
as the following: “Common Software Errors” (Kaner, C., 
Falk, J. and Nguyen, H.Q. 1993. Testing Computer Soft-
ware. Van Nostrand Reinhold); “Test Catalog” (Marick, B. 
1994. Craft of Software Testing. Prentice Hall PTR. www.
testing.com/writings/short-catalog.pdf); or “Attacks” 
(Whittaker, J.A. 2002. How to Break Software: A Practi-
cal Guide to Testing. Addison Wesley); as well as on the 
Web (for example, http://blogs.msdn.com/jledgard/
archive/2003/11/03/53722.aspx).

Good design (including dependency analysis). Many 
books and papers explain how to do good up-front design 
(the best kind), but what if you already have the code?  

Dependency analysis can be used to refactor code 
(rewriting to improve code readability or structure; see 
http://www.refactoring.com/). Many IDEs are incorporat-

ing features to make code refactoring easier. Good unit 
tests, as agile methods advocate, provide more confi dence 
that refactoring hasn’t broken or regressed the system.

Dependency analysis allows testers to choose only 
those test cases that target a change. Simplistic analysis 
can be done by looking at structural code dependencies, 
and it can be very effective. More sophisticated data-fl ow 
analysis allows more accurate dependency determina-
tion, but at a greater cost. Either technique can be a big 
improvement over just running everything all the time. A 
test design implication of this is to create relatively small 
test cases to reduce extraneous testing or factor big tests 
into little ones.9

Good static checking (including model property 
checking). The convergence of static analysis tools with 
formal methods is now providing powerful tools for 
ensuring high-quality units and to some extent their 
integration. For example, PREfi x is a simulation tool for 
C/C++ that simulates the program execution state along 
a selected set of program paths and queries the execution 
state to identify programming errors.10 The issue creat-
ing the greatest resistance to adoption for most static 
checking remains the false positive rate. Some tools can 
only make reliable guesses and sometimes guess wrong. 
Developers get frustrated if they can’t turn off the tool 
for the places they know it is wrong. Sometimes develop-
ers get carried away and turn off too much, then miss 
problems the tool could have caught. Some developers 
don’t believe the issues found are really bugs even when 
they are.

Many of the more advanced checks require additional 
annotations to describe the intent. You can emulate some 
of the stricter checks in any language just using compiler 
or language constructs such as assert(). It is still a chal-
lenge to convince many developers that the extra annota-
tions will pay off in higher-quality, more robust, and 
more maintainable code. Others, however, who have used 
it and seen nasty issues that would have taken hours, 
days, or weeks to debug being found effortlessly up front, 
would never go back.

All of this data can also help independent testers later 
because defects found through static analysis are early 
indicators of pre-release system defect density. Static anal-
ysis defect density can be used to discriminate between 
components of high and low quality (fault-prone and 
non-fault-prone components).

Concurrency testing. Concurrency issues can be 
detected both statically (formal method properties such as 
liveness, livelock/deadlock, etc.) and dynamically (auto-
matic race lockset tracking). Static detection frequently 
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requires extensive annotation of the source code with 
additional information to allow the necessary reasoning 
to be done about the code. The advantage of static analy-
sis is its potential to uncover all race conditions. 

Dynamic race detectors, such as code coverage tools, 
require a good set of test cases as input because they look 
only at what the tests force to occur. They can, however, 
determine race conditions even though the test itself 
didn’t force it. As long as the test executes the code of the 
overlapping locks, it is likely to be detected. Several tools, 
such as Java PathExplorer (JPAX), have been created that 
extend the Eraser lockset algorithm.11 Besides no guaran-
tee of completeness without complete test cases, the other 
issues still being resolved with dynamic race detectors 
include their performance and the number of false posi-
tives they generate.

More traditional methods of concurrency testing 
involve controlling the thread scheduler, if possible, to 
create unusual timings. Fault injection tools, such as Secu-
rity Innovation’s Holodeck, can be used to create artifi cial 
delays and increase the likelihood of race conditions. As a 
last resort, the old standby of just running lots of activity 
concurrently under varying conditions has been fruitful 
in fi nding defects (although perhaps not as effi ciently as 
many of the newer methods).

PRIORITIZE TESTING
The previous section helps set the stage at a basic level 
with units of code and analysis, but most test organiza-
tions deal with testing the integrated whole. Testers 
have to be creative in addressing the overwhelming size 
of today’s software systems. When it’s too darned big 
to test, you must be selective in what you test, and use 
more powerful automation such as modeling to help you 
test. Fault injection tools again come in handy as a way 
to tweak things when reaching through the overall big 
system becomes daunting (which it does quickly!).

Use code coverage to help select and prioritize tests. 
Prioritizing test cases has become increasingly practi-
cal in the past two decades. If you know the coverage of 
each test case, you can prioritize the tests such that you 
run tests in the least amount of time to get the highest 
coverage. The major problem here is getting the coverage 
data and keeping it up to date. Not all tools let you merge 
coverage data from different builds, and running coverage 
all the time can slow down testing. The time to calculate 
the minimization can also be a deterrent.

For many collections of test cases, running the mini-
mal set of test cases that give the same coverage as all of 
the test cases typically fi nds almost all of the bugs that 

running all of the test cases would fi nd.
Industrial experience at several companies appears to 

confi rm this. For example, for an industrial program of 
20,929 blocks, choosing tests only by function call cover-
age required only 10 percent of the tests while providing 
99.2 percent of the same coverage. Reducing by block 
coverage meant that 34 percent of the tests provided 
the same block coverage and 99.99 percent of the same 
branch (segment) coverage. Further, there were no fi eld-
reported defects found that would have been caught by 
the full set of tests but missed by the coverage-reduced set 
of tests.

Best of all, anyone can easily run the experimental 
comparison. First run the minimal set of tests providing 
the same coverage as all of the tests, and then run the 
remaining tests to see how many additional defects are 
revealed.

You can also combine this with dependency analysis 
to fi rst target only the changed code. Depending on the 
sophistication of your dependency analysis, you may not 
have to do any further testing.

Use customer usage data. Another great way to target 
testing is based on actual customer usage. Customers 
perceive the reliability of a product relative to their usage 
of it. A feature used by only a few customers on rare occa-
sions will have less impact on customer satisfaction than 
bread-and-butter features used by virtually all customers 
all of the time. Although development teams can always 
make conjectures about product usage, which makes a 
useful start, actual data improves the targeting. 

Ideally, you can automatically record and have actual 
customer usage sent to you. This approach has several 
problems, including privacy, performance, and secu-
rity. Each of these can be dealt with, but it is nontrivial. 
Alternatively, you may have only a select few customers 
reporting data, you may do random sampling, or you 
may fall back on case studies or usability studies. You 

When it’s too darned big to test, 
you must be selective in what you test, 
and use more powerful automation 
such as modeling to help you test.
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can also work with your customers for cooperative early 
testing either through beta programs or even earlier pre-
release disclosures.12

Customer usage data is especially important in reli-
ability testing where an operational profi le improves the 
meaningfulness of the reliability data. Customer usage 
data is also critical to prioritizing the confi gurations that 
you test. Setting up environments similar to those of your 
customers helps you fi nd interactions that you might 
otherwise miss.

Choose confi guration interactions with all-pairs. A 
major problem that makes the testing task too darned 
big is worrying about all the possible confi gurations. 
Confi gurations cover things such as different hardware, 
different software (operating system, Web browser, appli-
cation, etc.) or software versions, confi guration values 
(such as network speed or amount of memory), etc. If 
you understand which interactions of your confi gura-
tions cause problems, you should explicitly test for them. 
But when all the software “should” be independent of 
the confi guration, and experience has shown you it isn’t, 
then you get worried. Setting up a confi guration to test is 
frequently expensive, and running a full set of tests typi-
cally isn’t cheap, either.

If you are doing performance testing, you need the 
more formal design-of-experiments techniques associ-
ated with robust testing and requiring orthogonal arrays. 
For simple verifi cation, however, another easy, cheap 
technique used by many test shops is all-pairs. The most 
common defect doesn’t require any interaction. Just 
triggering the defect under any confi guration will cause 
a failure about 80 percent of the time. After basic testing 
eliminates those defects, the next most common defects 

turn out to require the interaction of just two aspects of 
the confi guration. Which two aspects? That’s the trick! 
Using all-pairs, you can cheaply verify any pair of interac-
tions in your confi guration. Public domain tools exist 
(http://tejasconsulting.com/open-testware/feature/all-
pairs.html), and it takes less than a half hour to download 
the tool and create a description of your confi guration 
issues. You’ll then get a very quick answer. 

As a simple example of this, I consulted with a test 
group that had tested 100 different confi gurations, but 
were still getting errors from the fi eld. I taught them the 
technique and tool, and in less than an hour they had a 
result showing that only 60 confi gurations were needed 
to cover all pairs of interactions, and the interaction most 
recently reported from the fi eld was one of them. That is, 
if they tested with fewer confi gurations, they could have 
found the bug before shipping. 

All-pairs testing may be useful in other domains, but 
the studies are not yet conclusive.

USE OF MODELS FOR STOCHASTIC TESTS
One way toward stochastic testing is via the use of 
models. You can begin with the simplest of models, such 
as “dumb monkey” test tools or “fuzz” testers. You can 
enhance them toward “smart monkey” tools and formal-
ize them using a variety of modeling languages, such as 
fi nite state machines, UML2 (Unifi ed Modeling Language, 
version 2), and abstract state machines. Testers’ reluctance 
in the past to embrace formal methods came principally 
from the state explosion problem that appeared to rel-
egate most formal methods to “toy” problems instead of 
the big system-level problems that many testers have to 
deal with.

Recent advances in many fi elds have helped, but espe-
cially recent breakthroughs that make SAT (propositional 
satisfi ability) solvers highly effi cient and able to handle 
more than 1 million variables and operations. Models 
can be used to generate all relevant variations for limited 
sizes of data structures.13,14 You can also use a stochastic 
model that defi nes the structure of how the target system 
is stimulated by its environment.15 This stochastic testing 
takes a different approach to sampling than partition test-
ing and simple random testing. 

Even nonautomated models can provide useful 
insights for test design. Simple fi nite state machine 
models can show states the designers hadn’t thought 
about or anticipated. They also help clarify the expected 
behavior for the tester. You can build your own fi nite 
state machines in almost any language. A simple example 
for C# is goldilocks.16
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The major issue with model-based testing is changing 
testers’ mind-sets. Many testers haven’t been trained to 
think abstractly about what they are testing, and model-
ing requires the ability to abstract away some detail while 
concentrating on specific aspects. Modeling can be espe-
cially difficult for ad hoc testers not used to approaching 
a problem systematically. Another reason modeling fails 
is because people expect it to solve all their problems. 
Frequently it is better just to add a few manually designed 
test cases than to extend the model to cover all the details 
for all cases.

ECONOMY IN TESTING
The size and complexity of today’s software requires that 
testers be economical in their test methods. Testers need a 
good understanding of the fault models of their tech-
niques and when and how they apply in order to make 
them better than stochastic testing. Code coverage should 
be used to make testing more efficient in selecting and 
prioritizing tests, but not necessarily in judging the tests. 
Data on customer usage is also paramount in selecting 
tests and configurations with constrained resources. Pair-
wise testing can be used to control the growth of testing 
different configurations. 

Attempting to black-box test integrations of poor-qual-
ity components (the traditional “big bang” technique) 
has always been ineffective, but large systems make it 
exponentially worse. Test groups must require and prod-
uct developers must embrace thorough unit testing and 
preferably tests before code (test-driven development). 
Dependencies among units must be controlled to make 
integration quality truly feasible. Q
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