

CHAPTER 5

Forecasting

To accompany *Quantitative Analysis for Management, Twelfth Edition,* by Render, Stair, Hanna and Hale Power Point slides created by Jeff Heyl

Copyright ©2015 Pearson Education, Inc.

LEARNING OBJECTIVES

After completing this chapter, students will be able to:

- 1. Understand and know when to use various families of forecasting models.
- 2. Compare moving averages, exponential smoothing, and other time-series models.
- 3. Seasonally adjust data.
- 4. Understand Delphi and other qualitative decisionmaking approaches.
- 5. Compute a variety of error measures.

CHAPTER OUTLINE

- 5.1 Introduction
- **5.2** Types of Forecasting Models
- **5.3** Components of a Time Series
- 5.4 Measures of Forecast Accuracy
- 5.5 Forecasting Models Random Variations Only
- 5.6 Forecasting Models Trend and Random Variations
- 5.7 Adjusting for Seasonal Variations
- 5.8 Forecasting Models Trend, Seasonal, and Random Variations
- 5.9 Monitoring and Controlling Forecasts

Introduction

- Main purpose of forecasting
 - Reduce uncertainty and make better estimates of what will happen in the future
- Subjective methods
 - Seat-of-the pants methods, intuition, experience
- More formal quantitative and qualitative techniques

Forecasting Models

FIGURE 5.1

Copyright ©2015 Pearson Education, Inc.

Qualitative Models

- Incorporate judgmental or subjective factors
 - Useful when subjective factors are important or accurate quantitative data is difficult to obtain
- Common qualitative techniques
 - 1. Delphi method
 - 2. Jury of executive opinion
 - 3. Sales force composite
 - 4. Consumer market surveys

Qualitative Models

- Delphi Method
 - Iterative group process
 - Respondents provide input to decision makers
 - Repeated until consensus is reached
- Jury of Executive Opinion
 - Collects opinions of a small group of highlevel managers
 - May use statistical models for analysis

Qualitative Models

- Sales Force Composite
 - Allows individual salespersons estimates
 - Reviewed for reasonableness
 - Data is compiled at a district or national level
- Consumer Market Survey
 - Information on purchasing plans solicited from customers or potential customers
 - Used in forecasting, product design, new product planning

Time-Series Models

- Predict the future based on the past
- Uses only historical data on one variable
- Extrapolations of past values of a series
- Ignores factors such as
 - Economy
 - Competition
 - Selling price

Components of a Time Series

- Sequence of values recorded at successive intervals of time
- Four possible components
 - Trend (T)
 - Seasonal (S)
 - Cyclical (C)
 - Random (R)

Components of a Time Series

FIGURE 5.2 – Scatter Diagram for Four Time Series of Quarterly Data

Components of a Time Series

FIGURE 5.3 – Scatter Diagram of Times Series with Cyclical and Random Components

Time-Series Models

- Two basic forms
 - Multiplicative

Demand = $T \times S \times C \times R$

Additive

Demand = T + S + C + R

– Combinations are possible

- Compare forecasted values with actual values
 - See how well one model works
 - To compare models

Forecast error = Actual value – Forecast value

- Measure of accuracy
 - Mean absolute deviation (MAD):

$$MAD = \frac{\mathring{a}|\text{forecast error}|}{n}$$

TABLE 5.1 – Computing the Mean Absolute Deviation (MAD)

YEAR	ACTUAL SALES OF WIRELESS SPEAKERS	FORECAST SALES	ABSOLUTE VALUE OF ERRORS (DEVIATION), (ACTUAL – FORECAST)
1	110	—	
2	100	110	
3	120	100	
4	140	120	
5	170	140	
6	150	170	
7	160	150	
8	190	160	
9	200	190	
10	190	200	
11	—	190	

TABLE 5.1 – Computing the Mean Absolute Deviation (MAD)

YEAR	ACTUAL SALES OF WIRELESS SPEAKERS	FORECAST SALES
1	110	- 1
2	100	110
3	120	100
4	140	120
5	170	140
6	150	170
7	160	150
8	190	160
9	200	190
10	190	200
11		190

- Forecast based on naïve model
- No attempt to adjust for time series components

Accuracy

$$MAD = \frac{\ddot{a}|\text{forecast error}|}{n} = \frac{160}{9} = 17.8$$

YEAR	ACTUAL SALES OF WIRELESS SPEAKERS	FORECAST SALES	ABSOLUTE VALUE OF ERRORS (DEVIATION), (ACTUAL – FORECAST)
1	110		
2	100	110	100 - 110 = 10
3	120	100	120 - 110 = 20
4 140		120	140 - 120 = 20
5	170	140	170 – 140 = 30
6	150	170	150 – 170 = 20
7	160	150	160 - 150 = 10
8	190	160	190 - 160 = 30
9	200	190	200 - 190 = 10
10	190	200	190 - 200 = 10
11		190	
			Sum of errors = 160
			MAD = 160/9 = 17.8

- Other common measures
 - Mean squared error (MSE)

$$MSE = \frac{\mathring{a}(error)^2}{n}$$

- Mean absolute percent error (MAPE)

- Bias is the average error

Forecasting Random Variations

- No other components are present
- Averaging techniques smooth out forecasts
 - Moving averages
 - Weighted moving averages
 - Exponential smoothing

Moving Averages

- Used when demand is relatively steady over time
 - The next forecast is the average of the most recent *n* data values from the time series
 - Smooths out short-term irregularities in the data series

Sum of demands in previous *n* periods

Moving average forecast =

n

Moving Averages

• Mathematically

$$F_{t+1} = \frac{Y_t + Y_{t-1} + \dots + Y_{t-n+1}}{n}$$

where

 F_{t+1} = forecast for time period t + 1 Y_t = actual value in time period tn = number of periods to average

Wallace Garden Supply

- Wallace Garden Supply wants to forecast demand for its Storage Shed
 - Collected data for the past year
 - Use a three-month moving average (n = 3)

Wallace Garden Supply

TABLE 5.2

MONTH	ACTUAL SHED SALES	3-MONTH MOVING AVERAGE
January	10	
February	12	
March	13	
April	16	(10 + 12 + 13)/3 = 11.67
May	19	(12 + 13 + 16)/3 = 13.67
June	23	(13 + 16 + 19)/3 = 16.00
July	26	(16 + 19 + 23)/3 = 19.33
August	30	(19 + 23 + 26)/3 = 22.67
September	28	(23 + 26 + 30)/3 = 26.33
October	18	(26 + 30 + 28)/3 = 28.00
November	16	(30 + 28 + 18)/3 = 25.33
December	14	(28 + 18 + 16)/3 = 20.67
January		(18 + 16 + 14)/3 = 16.00

Weighted Moving Averages

- Weighted moving averages use weights to put more emphasis on previous periods
 - Often used when a trend or other pattern is emerging

 $F_{t+1} = \frac{\text{\ransuremath{\mathring{a}}}(\text{Weight in period } i)(\text{Actual value in period})}{\text{\ransuremath{\mathring{a}}}(\text{Weights})}$

- Mathematically

$$F_{t+1} = \frac{w_1 Y_t + w_2 Y_{t-1} + \dots + w_n Y_{t-n+1}}{w_1 + w_2 + \dots + w_n}$$

where

 w_i = weight for the *i*th observation

Wallace Garden Supply

- Use a 3-month weighted moving average model to forecast demand
 - Weighting scheme

Wallace Garden Supply

TABLE 5.3

MONTH	ACTUAL SHED SALES	3-MONTH WEIGHTED MOVING AVERAGE
January	10	
February	12	
March	13	,
April	16	[(3 X 13) + (2 X 12) + (10)]/6 = 12.17
May	19	[(3 X 16) + (2 X 13) + (12)]/6 = 14.33
June	23	[(3 X 19) + (2 X 16) + (13)]/6 = 17.00
July	26	[(3 X 23) + (2 X 19) + (16)]/6 = 20.50
August	30	[(3 X 26) + (2 X 23) + (19)]/6 = 23.83
September	28	[(3 X 30) + (2 X 26) + (23)]/6 = 27.50
October	18	$[(3 \times 28) + (2 \times 30) + (26)]/6 = 28.33$
November	16	[(3 X 18) + (2 X 28) + (30)]/6 = 23.33
December	14	[(3 X 16) + (2 X 18) + (28)]/6 = 18.67
January	—	[(3 X 14) + (2 X 16) + (18)]/6 = 15.33

Exponential Smoothing

Exponential smoothing

- A type of moving average
- Easy to use
- Requires little record keeping of data

New forecast = Last period's forecast + α (Last period's actual demand - Last period's forecast)

α is a weight (or **smoothing constant**) with a value $0 \le \alpha \le 1$

Exponential Smoothing

• Mathematically

$$F_{t+1} = F_t + \partial(Y_t - F_t)$$

where

 F_{t+1} = new forecast (for time period t + 1) Y_t = pervious forecast (for time period t) α = smoothing constant ($0 \le \alpha \le 1$) Y_t = pervious period's actual demand

The idea is simple – the new estimate is the old estimate plus some fraction of the error in the last period

Exponential Smoothing Example

- In January, February's demand for a certain car model was predicted to be 142
- Actual February demand was 153 autos
- Using a smoothing constant of α = 0.20, what is the forecast for March?

New forecast (for March demand) = 142 + 0.2(153 - 142)= 144.2 or 144 autos

• If actual March demand = 136

New forecast (for April demand) = 144.2 + 0.2(136 - 144.2)= 142.6 or 143 autos

Selecting the Smoothing Constant

- Selecting the appropriate value for α is key to obtaining a good forecast
- The objective is always to generate an accurate forecast
- The general approach is to develop trial forecasts with different values of α and select the α that results in the lowest MAD

Port of Baltimore Example

TABLE 5.4 – Exponential Smoothing Forecast for $\alpha = 0.1$ and $\alpha = 0.5$

QUARTER	ACTUAL TONNAGE UNLOADED	FORECAST USING $\alpha = 0.10$	FORECAST USING α = 0.50
1	180	175	175
2	168	175.5 = 175.00 + 0.10(180 - 175)	177.5
3	159	174.75 = 175.50 + 0.10(168 - 175.50)	172.75
4	175	173.18 = 174.75 + 0.10(159 - 174.75)	165.88
5	190	173.36 = 173.18 + 0.10(175 - 173.18)	170.44
6	205	175.02 = 173.36 + 0.10(190 - 173.36)	180.22
7	180	178.02 = 175.02 + 0.10(205 - 175.02)	192.61
8	182	178.22 = 178.02 + 0.10(180 - 178.02)	186.30
9	?	178.60 = 178.22 + 0.10(182 - 178.22)	184.15

Copyright ©2015 Pearson Education, Inc.

Port of Baltimore Example

TABLE 5.5 – Absolute Deviations and MADs

QUARTER	ACTUAL TONNAGE UNLOADED	ACTUALTONNAGEFORECASTJNLOADEDWITH $\alpha = 0.10$		FORECAST WITH α = 0.50	ABSOLUTE DEVIATIONS FOR α = 0.50
1	180	175	5	175	5
2	168	175.5	7.5	177.5	9.5
3	159	174.75	15.75	172.75	13.75
4	175	173.18	1.82	165.88	9.12
5	5 190		16.64	170.44	19.56
6	205 175.02		29.98	180.22	24.78
7	180 178.02		1.98	192.61	12.61
8	8 182 178.22		3.78 186.30		4.3
Sum of abso	olute deviations		82.45		98.63
	MAD =	Σ deviations n	= 10.31	MA	D = 12.33
			Be	st choice	

PROGRAM 5.1A – Selecting the Forecasting Model

FILE	HOME INSERT PAGE LAYOUT FORMULAS	DATA REVIEW VIEW Excel QM					
By Alpha chapter Menus	0 1 2 Gridlines Headings Paralelines Assignment Breakeven Analysis Recision Analysis	ulas User Color preferences selection Click the Excel					
P33	Click Alphabetical and scroll down to Forecasting.	Moving QM Tab. Weighted Moving Average					
1 2	Linear, Integer & Mixed Integer Programming	Exponential Smoothing Trend Adjusted Exponential Smoothing					
3 4	3 Markov Chains Regression/Trend Analysis 4 Material Requirements Planning Multiple Regression						
6 7	Network Analysis	Multiplicative Seasonal Model					
8 9	Project Management	Regression Projector Error Analysis					
10 11	Quality Control Simulation						
12 13 14	Statistics (mean, var, sd; Normal Dist)	With cursor on Forecasting, a menu appears to the right. Select					
15 16	Waiting Lines The model you want and an initialization window will open						
17 18	Display OM Models Only Display QM Models Only						
19 20	Display All Models						

Copyright ©2015 Pearson Education, Inc.

PROGRAM 5.1B - Initializing Excel QM

itle: UWallace Garden Sup	ply	Sheet name:
lumber of (past) periods of	f data 12	Options Tracking Signal
lame for period	Period	- Graph
Jse A for A, B, C or a for	a, b, c)	Giaphi
umber of periods to avera	ige 3	
) basis
Enter the number c	of periods to be	averaged.
Enter the number c	of periods to be	Use Default Settings

PROGRAM 5.1C - Excel QM Output

- X	A	В	C	nter th	e dema	nd data	and the	e weiaht	ts. The
1	Wallace	e Garden	Sup	alculati	one will	automa	tically h	o porfo	rmed
2				alculati		automa	itically c	e peno	imeu.
3	Forecast	ting	Weighte	d movin	g averag	es - 3 pe	eriod mo	ving ave	rage
4	Enter the data in the shaded area. Enter weights in INCREASING order from top to bottom								
5									
6									
7	Data				Forecasts	and Error	Analysis		
8	Period	Demand	Weights		Forecast	Error	Absolute	Squared	Abs Pct Err
9	Period 1	10	1						
10	Period 2	12	2						
11	Period 3	13	3						
12	Period 4	16			12.16667	3.833333	3.833333	14.69444	23.96%
13	Period 5	19			14.33333	4.666667	4.666667	21.77778	24.56%
14	Period 6	23			17	6	6	36	26.09%
15	Period 7	26			20.5	5.5	5.5	30.25	21.15%
16	Period 8	30			23.83333	6.166667	6.166667	38.02778	20.56%
17	Period 9	28		The r	noasuro	s of acc	uracy a	ra show	n here 🎽
18	Period 10	18		Inci	neasure	5 01 acc	uracy a	e 3110W	in nere.
19	Period 11	16			23.33333	-7.33333	7.333333	53.77778	45.83%
20	Period 12	14			18.66667	-4.66667	4.666667	21.77778	33.33%
20						4.333333	49	323.3333	254.68%
T	he torec	ast for the	e next p	eriod is	here.	0.481481	5.444444	35.92593	28.30%
20		/				Bias	MAD	MSE	MAPE
24		dan b					SE	6.796358	
25	Next perio	d 15.3333333							

PROGRAM 5.2A – Selecting Time-Series Analysis in QM for Windows

Using Software

PROGRAM 5.2B - Entering Data

Create data set for Forecasting/Time Series Analysis Enter a title.	
Number of Past periods	nter the number of names Overview Overview
	 Past period 1, Past period 2, Past period 3, a, b, c, d, e, A, B, C, D, E, 1, 2, 3, 4, 5, January, February, March, April,
	Click here to set start month
	<u>C</u> ancel <u>H</u> elp <u>O</u> K

Using Software

PROGRAM 5.2C - Selecting the Model and Entering Data

Using Software

PROGRAM 5.2D – Output for Port of Baltimore Example

<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>M</u> odule Fo <u>r</u> mat <u>T</u> ools	Window Help Cascade
Arial + 9.7!+	Tile Additional output is
II IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Edit Data available under Window.
Exponential Smoothing	Error analysis begins in period 2. Error analysis begins in period 2.
	2 Details and Error Analysis
Forecasting Results	3 Errors as a function of alpha
	4 Control (Tracking Signal) Port of Baltimore Summary
Measure	<u>5</u> Graph
Error Measures	
Bias (Mean Error)	1.069 The measures of
MAD (Mean Absolute Deviation)	10.868 accuracy are shown here.
MSE (Mean Squared Error)	207.24
Standard Error (denom=n-2=5)	17.033
MAPE (Mean Absolute Percent Error)	5.999% The forecast for next
Forecast	
next period	180.748 period is nere.

Forecasting – Trend and Random

- Exponential smoothing does not respond to trends
- A more complex model can be used
- The basic approach
 - Develop an exponential smoothing forecast
 - Adjust it for the trend

Forecast including trend $(FIT_{t+1}) =$

Smoothed forecast (F_{t+1}) + Smoothed Trend (T_{t+1})

Exponential Smoothing with Trend

- The equation for the trend correction uses a new smoothing constant β
- F_t and T_t must be given or estimated
- Three steps in developing *FIT*_t

Step 1: Compute smoothed forecast F_{t+1}

 $\frac{\text{Smoothed}}{\text{forecast}} = \frac{\text{Previous forecast}}{\text{including trend}} + \alpha(\text{Last error})$

$$F_{t+1} = FIT_t + \partial(Y_t - FIT_t)$$

Exponential Smoothing with Trend

Step 2: Update the trend (T_{t+1}) using

Smoothed forecast = Previous forecast + β (Error or excess in trend)

 $T_{t+1} = T_t + b(F_{t+1} - FIT_t)$

Step 3: Calculate the trend-adjusted exponential smoothing forecast (FIT_{t+1}) using

Forecast including trend (FIT_{t+1}) = Smoothed forecast (F_{t+1}) + Smoothed trend (T_{t+1})

$$\mathbf{F} \mathbf{I} \mathbf{T}_{t+1} = \mathbf{F}_{t+1} + \mathbf{T}_{t+1}$$

Selecting a Smoothing Constant

- A high value of β makes the forecast more responsive to changes in trend
- A low value of β gives less weight to the recent trend and tends to smooth out the trend
- Values are often selected using a trial-anderror approach based on the value of the MAD for different values of β

• Demand for electrical generators from 2007 – 2013

- Midwest assumes F_1 is perfect, $T_1 = 0$, $\alpha = 0.3$, $\beta = 0.4$

$$FIT_1 = F_1 + T_1 = 74 + 0 = 74$$

TABLE 5.6 –	YEAR	ELECTRICAL GENERATORS SOLD
Demand	2007	74
	2008	79
	2009	80
	2010	90
	2011	105
	2012	142
	2013	122

For 2008 (time period 2)

Step 1: Compute F_{t+1}

$$F_2 = FIT_1 + \alpha(Y_1 - FIT_1)$$

= 74 + 0.3(74 - 74) = 74

Step 2: Update the trend

$$T_2 = T_1 + \beta (F_2 - F I T_1)$$

= 0 + .4(74 - 74) = 0

Step 3: Calculate the trend-adjusted exponential smoothing forecast (F_{t+1}) using

$$FIT_2 = F_2 + T_2$$

= 74 + 0 = 74

For 2009 (time period 3)

Step 1:
$$F_3 = FIT_2 + \alpha(Y_2 - FIT_2)$$

= 74 + 0.3(79 - 74) = 75.5

Step 2:
$$T_3 = T_2 + .4(F_3 - F/T_2)$$

= 0 + .4(75.5 - 74) = 0.6

Step 3: $F/T_3 = F_3 + T_3$ = 75.5 + 0.6 = 76.1

TABLE 5.7 – Exponential Smoothing with Trend Forecasts

TIME (t)	DEMAND (Y _i)	$F_{t+1} = FIT_t + 0.3(Y_t - FIT_t)$	$T_{t+1} = T_t + 0.4(F_{t+1} - FIT_t)$	$FIT_{t+1} = F_{t+1} + T_{t+1}$
1	74	74	0	74
2	79	74 = 74 + 0.3(74 - 74)	$\begin{array}{c} 0 \\ = 0 + 0.4(74 - 74) \end{array}$	74 = 74 + 0
3	80	75.5 = 74 + 0.3(79 – 74)	$\begin{array}{l} 0.6 \\ = 0 + 0.4(75.5 - 74) \end{array}$	76.1 = 75.5 + 0.6
4	90	77.270 = 76.1 + 0.3(80 – 76.1)	1.068 = 0.6 + 0.4(77.27 – 76.1)	78.338 = 77.270 + 1.068
5	105	81.837 = 78.338 + 0.3(90 – 78.338)	2.468 = 1.068 + 0.4(81.837 – 78.338)	84.305 = 81.837 + 2.468
6	142	90.514 = 84.305 + 0.3(105 – 84.305)	4.952 = 2.468 + 0.4(90.514 - 84.305)	95.466 = 90.514 + 4.952
7	122	109.426 = 95.446 + 0.3(142 – 95.466)	10.536 = 4.952 + 0.4(109.426 – 95.466)	119.962 = 109.426 + 10.536
8		120.573 = 119.962 + 0.3(122 – 119.962)	10.780 = 10.536 + 0.4(120.573 - 119.962)	131.353 = 120.573 + 10.780

Copyright ©2015 Pearson Education, Inc.

PROGRAM 5.3 - Output from Excel QM Trend-Adjusted Exponential Smoothing

	A	В	С	D	E	F	G	Н	1	J
1	Midwestern Manufacturing Company Example									
2										
3	Forecasting Trend adjusted exponential smoothing									
4 5 6	Enter alpha and beta (between 0 and 1), enter the past demands in the shaded column then enter a starting forecast. If the starting forecast is not in the first period then delete the error analysis for									
7	Alpha	0.3								
8	Beta	0.4								
9	Data			Forecasts and	Error Ana	alysis				
10	Period	Demand		Smoothed	Smoothed	Forecast Including Trend EIT.	Frror	Absolute	Squared	Abs Pct Frr
11	Deried 1	74		7/	nena, n	74	0	0	0	00.00%
12	Period 2	74		74	0	74	5	5	25	06.00%
13	Period 3	80		75.5	0.6	76.1	39	39	15 21	04.88%
14	Period 4	90		77.27	1.068	78 338	11 662	11 662	136 0022	12.96%
15	Period 5	105		81.8366	2.46744	84.30404	20.69596	20.696	428.3228	19.71%
16	Period 6	142		90.512828	4.950955	95.4637832	46.53622	46.5362	2165.619	32.77%
17	Period 7	122		109.4246482	10.5353	119.959949	2.040051	2.04005	4.161806	0.016722
18		Next perio	od	120.5719646	10.78011	131.352072				
19				Total			89.83423	89.8342	2774.316	78.32%
20				A			12.83346	12.8335	396.3309	11.19%
21		(Th	e forec	ast for nex	kt perio	d is here.	Bias	MAD	MSE	MAPE
22								SE	23.55554	

Trend Projections

- Fits a trend line to a series of historical data points
- Projected into the future for medium- to long-range forecasts
- Trend equations can be developed based on exponential or quadratic models
- Linear model developed using regression analysis is simplest

Trend Projections

Mathematical formula

$$\hat{\mathbf{Y}} = b_0 + b_1 \mathbf{X}$$

- $\hat{\mathbf{Y}}$ = predicted value
- b_0 = intercept
- b_1 = slope of the line
- X = time period (i.e., X = 1, 2, 3, ..., n)

 Based on least squares regression, the forecast equation is

$$\hat{Y} = 56.71 + 10.54X$$

• Year 2014 is coded as X = 8

(sales in 2014) = 56.71 + 10.54(8)= 141.03, or 141 generators

• For X = 9

(sales in 2015) = 56.71 + 10.54(9)= 151.57, or 152 generators

PROGRAM 5.4 – Output from Excel QM for Trend Line

	A	В	С	D	E	F	G	Н	1
1	Midwes	stern Mai	nufactu	ring C	ompany	/ Exam	ple		
2							A 24 2 1		
3	Forecast	ting	Simple I	inear re	gression				
4	If this is tr	end analysis th	en simply en	ter the past	demands in	the			
5	demand o	olumn. If this is	causal regre	ession then	enter the y,x	pairs			
6	with y first	t and enter a ne	w value of x	at the botto	om in order to)			
7					-				
8	Data				Forecasts	and Error	Analysis		
9	Period	Demand (y)	Period(x)		Forecast	Error	Absolute	Squared	Abs Pct Err
10	Period 1	74	1		67.25	6.75	6.75	45.5625	09.12%
11	Period 2	79	2		77.7857	1.2143	1.2143	1.4745	01.54%
12	Period 3	80	3		с.	.1	•	•	10.40%
13	Period 4	90	4	IO	forecast	other 1	time pe	riods,	09.84%
14	Period 5	105	5	ent	er the t	ime per	riod her	e.	04.18%
15	Period 6	142	6			- 1			15.54%
16	Period 7	122	7		130.4643	-8.4643	8.4643	71.6441	06.94%
17					Total	-4.3E-14	60.0714	772.8214	57.57%
18	Intercept	56.7143			Average	-6.1E-15	8.5816	110.4031	08.22%
19	Slope	10.5357				Bias	MAD	MSE	MAPE
20							SE	12.4324	
21	Forecast	141	8			Ĵ			
22							Correlatio	0.89491	
1	The fore	cast for n	ext per	iod is h	ere.	ent of dete	rmination	0.800863	

PROGRAM 5.5 – Output from QM for Trend Line

Forecasting Results					
Midwestern Manufacturing Company Summary					
Measure Forecas periods	sts for future time s are shown here.	Future Period	Forecast		
Error Measures		8	141		
Bias (Mean Error)	0	9	151.536		
MAD (Mean Absolute Deviation)	8.582	10	162.071		
MSE (Mean Squared Error)	110.403	11	172.607		
Standard Error (denom=n-2=5)	12.432	12	183.143		
MAPE (Mean Absolute Percent	8.224%	13	193.679		
Regression line		14	204.214		
Demand(y) = 56.714		15	214.75		
+ 10.536 * Time(x)		16	225.286		
Statistics	The trend lin	The trand line is			
Correlation coefficient			246.357		
Coefficient of determination (r ⁴ 2)	shown over	two lines.	256.893		
		20	267.429		
	8	21	277.964		

FIGURE 5.4 – Generator Demand Based on Trend Line

Seasonal Variations

- Recurring variations over time may indicate the need for seasonal adjustments in the trend line
- A **seasonal index** indicates how a particular season compares with an average season
 - An index of 1 indicates an average season
 - An index > 1 indicates the season is higher than average
 - An index < 1 indicates a season lower than average

Seasonal Indices

- Deseasonalized data is created by dividing each observation by the appropriate seasonal index
- Once deseasonalized forecasts have been developed, values are multiplied by the seasonal indices
- Computed in two ways
 - Overall average
 - Centered-moving-average approach

Seasonal Indices with No Trend

- Divide average value for each season by the average of all data
 - Telephone answering machines at Eichler Supplies
 - Sales data for the past two years for one model
 - Create a forecast that includes seasonality

Seasonal Indices with No Trend

TABLE 5.8 – Answering Machine Sales and Seasonal Indices

	SALES DEMAND		AVERAGE 2- YEAR	MONTHLY	AVERAGE	
MONTH	YEAR 1	YEAR 2	DEMAND	DEMAND	SEASONAL INDEX	
January	80	100	90	94	0.957	
February	85	75	80	94	0.851	
March	80	90	85	94	0.904	
April	110	90	100	94	1.064	
May	115	131	123	94	1.309	
June	120	110	115	94	1.223	
July	100	110	105	94	1.117	
August	110	90	100	94	1.064	
September	85	95	90	94	0.957	
October	75	85	80	94	0.851	
November	85	75	80	94	0.851	
December	80	80	80	94	0.851	
	Tota	al average demand	= 1,128			
	1,128 Average 2-year demand					
Average monthly	Average monthly demand = $\frac{17,120}{12 \text{ months}} = 94$ Seasonal index = $\frac{17,120}{\text{Average monthly demand}}$					

Copyright ©2015 Pearson Education, Inc.

Seasonal Indices with No Trend

Calculations for the seasonal indices

Jan.	$\frac{1,200}{12} 0.957 = 96$	July	$\frac{1,200}{12}$ (1.117 = 112)
Feb.	$\frac{1,200}{12}$ (0.851 = 85	Aug.	$\frac{1,200}{12}$ 1.064 = 106
Mar.	$\frac{1,200}{12} 0.904 = 90$	Sept.	$\frac{1,200}{12}$ (0.957 = 96)
Apr.	$\frac{1,200}{12} 1.064 = 106$	Oct.	$\frac{1,200}{12}$ $(0.851 = 85)$
May	$\frac{1,200}{12} 1.309 = 131$	Nov.	$\frac{1,200}{12}$ $(0.851 = 85)$
June	$\frac{1,200}{12} 1.223 = 122$	Dec.	$\frac{1,200}{12}$ (0.851 = 85)

Seasonal Indices with Trend

- Changes could be due to trend, seasonal, or random
- Centered moving average (CMA) approach prevents trend being interpreted as seasonal
- Turner Industries sales contain both trend and seasonal components

Seasonal Indices with Trend

- Steps in CMA
 - 1. Compute the CMA for each observation (where possible)
 - 2. Compute the seasonal ratio = Observation/CMA for that observation
 - 3. Average seasonal ratios to get seasonal indices
 - If seasonal indices do not add to the number of seasons, multiply each index by (Number of seasons)/(Sum of indices)

TABLE 5.9 – Quarterly Sales Data

QUARTER	YEAR 1	YEAR 2	YEAR 3	AVERAGE
1	108	116	123	115.67
2	125	134	142	133.67
3	150	159	168	159.00
4	141	152	165	152.67
Average	131.00	140.25	149.50	40.25
Definit	e trend	Sea pa	asonal attern	

- To calculate the CMA for quarter 3 of year 1, compare the actual sales with an average quarter centered on that time period
- Use 1.5 quarters before quarter 3 and 1.5 quarters after quarter 3
 - Take quarters 2, 3, and 4 and one half of quarters 1, year 1 and quarter 1, year 2

$$CMA(q3, y1) = \frac{0.5(108) + 125 + 150 + 141 + 0.5(116)}{4} = 132.0$$

 Compare the actual sales in quarter 3 to the CMA to find the seasonal ratio

Seasonal ratio =
$$\frac{\text{Sales in quarter 3}}{\text{CMA}} = \frac{150}{132.0} = 1.136$$

TABLE 5.10 – Centered Moving Averages and Seasonal Ratios

YEAR	QUARTER	SALES	СМА	SEASONAL RATIO
1	1	108		
	2	125		
	3	150	132.000	1.136
	4	141	134.125	1.051
2	1	116	136.375	0.851
	2	134	138.875	0.965
	3	159	141.125	1.127
	4	152	143.000	1.063
3	1	123	145.125	0.848
	2	142	147.875	0.960
	3	168		
	4	165		

 The two seasonal ratios for each quarter are averaged to get the seasonal index

Index for quarter $1 = l_1 = (0.851 + 0.848)/2 = 0.85$ Index for quarter $2 = l_2 = (0.965 + 0.960)/2 = 0.96$ Index for quarter $3 = l_3 = (1.136 + 1.127)/2 = 1.13$ Index for quarter $4 = l_4 = (1.051 + 1.063)/2 = 1.06$

 Scatterplot of Turner Industries Sales Data and Centered Moving Average

Trend, Seasonal, and Random Variations

- Decomposition isolating linear trend and seasonal factors to develop more accurate forecasts
- Five steps to decomposition
 - Compute seasonal indices using CMAs.
 - Deseasonalize the data by dividing each number by its seasonal index
 - Find the equation of a trend line using the deseasonalized data
 - Forecast for future periods using the trend line
 - Multiply the trend line forecast by the appropriate seasonal index

Deseasonalized Data

TABLE 5.11

SALES (\$1,000,000s)	SEASONAL INDEX	DESEASONALIZED SALES (\$1,000,000s)
108	0.85	127.059
125	0.96	130.208
150	1.13	132.743
141	1.06	133.019
116	0.85	136.471
134	0.96	139.583
159	1.13	140.708
152	1.06	143.396
123	0.85	144.706
142	0.96	147.917
168	1.13	148.673
165	1.06	155.660

Copyright ©2015 Pearson Education, Inc.

Deseasonalized Data

• Find a trend line using the deseasonalized data where *X* = time

$$b_1 = 2.34$$
 $b_0 = 124.78$
 $\hat{Y} = 124.78 + 2.34X$

 Develop a forecast for quarter 1, year 4 (X = 13) using this trend and multiply the forecast by the appropriate seasonal index

$$\hat{Y} = 124.78 + 2.34(13)$$

= 155.2 (before seasonality adjustment)

Deseasonalized Data

 Find a trend line using the deconceptized data where the second index

Including the seasonal index

 $\hat{Y} \hat{I}_1 = 155.2 \hat{0}.85 = 131.92$

 Develop a forecast for quarter 1, year 4 (X = 13) using this trend and multiply the forecast by the appropriate seasonal index

$$\hat{\mathbf{Y}} = 124.78 + 2.34(13)$$

= 155.2 (before seasonality)
Deseasonalized Data

FIGURE 5.5

Using Software

PROGRAM 5.6A - QM for Windows Input

Using Software

PROGRAM 5.6B – QM for Windows Output

Method Multiplicative Decomposition (seasonal)	# seasons (use 4 for qtrs,	The fin the tree season	al forecast is o nd (unadjuste al indices (fac	obtained by m d) forecast by tors).	iultiplying the
Measure	The seasonal (factors) are s	indices shown her	e. Unadjusted Forecast	Seasonal Factor	Adjusted Forecast
Error Measures		13	155.25	0.849	131.81
Bias (Mean Error)	0.001	14	157.594	0.963	151.687
MAD (Mean Absolute Deviation)	0.905	15	159.937	1.131	180.959
MSE (Mean Squared Error)	1.7	16	162.281	1.057	171.535
Standard Error (denom=n-2-4=6)	1.844	17	164.625	0.849	139.769
MAPE (Mean Absolute Percent Error)	0.595%	18	166.968	0.963	160.71
Regression line (unadjusted forecast)		19	169.312	1.131	191.566
Demand(y) = 124.784		20	171.655	1.057	181.444
+ 2.344 * time		21	173.999	0.849	147.728
Statistics The trend Lin	22	176.342	0.963	169.733	
Correlation coefficie	23	178.686	1.131	202.172	
Coefficient of detern here over tw	24	181.03	1.057	191.353	
		25	183.373	0.849	155.686
		26	185.717	0.963	178.756

Copyright ©2015 Pearson Education, Inc.

- Multiple regression can be used to forecast both trend and seasonal components
 - One independent variable is time
 - Dummy independent variables are used to represent the seasons
 - An additive decomposition model

$$\hat{\mathbf{Y}} = a + b_1 \mathbf{X}_1 + b_2 \mathbf{X}_2 + b_3 \mathbf{X}_3 + b_4 \mathbf{X}_4$$

where

 X_1 = time period X_2 = 1 if quarter 2, 0 otherwise X_3 = 1 if quarter 3, 0 otherwise X_4 = 1 if quarter 4, 0 otherwise

PROGRAM 5.7A - Excel QM Multiple Regression Initialization

readsheet Initialization			
Title: Turner Industrie	s	Sheet name:	
Number of (past) perio	ds of data 12] 🚍	
Name for period	Period		
(Use A for A, B, C or	a for a, b, c)	Enter the purch of	1
Number of independer	nt variables(X) 4	past period of d	ata
Name for x's	x		
	1	Enter the numbe	er of
		independent var	iables.
			-
	1	Help Cancel	ОК

PROGRAM 5.7B – Excel QM Multiple Regression Output

- 2	A	В	С	D	E	F	
1	Turner Industries						
2							
3	Forecastin	ng	My En	ter the v	/alues o	f	
4	Y and X1-X4 as shown						
5	Enter un	e uata ili uie	Slidue				
6				/			
7	Data						
8		Y	X 1	X 2	Х3	X 4	
9	Period 1	108	1	0	0	0	
10	Period 2	125	2	1	0	0	
11	Period 3	150	3	0	1	0	
12	Period 4	141		•			
13	Period 5	116	The regression coefficients				
14	Period 6	134	are shown here.				
15	Period 7	159					
16	Period 8	152	8	0	0	1	
17	Deriva I	400			0	0	
E E	Inter the v	/alues o	f the var	iables 🗎	0	0	
+	to obtain any forecast					0	
2					0	1	
21						1000.00000	
22	Coefficients	104.104	2 313	15.688	38.708	30.063	
23							
24							
25	Forecast	134.167	13	0	0	0	

Regression equation

 $\hat{Y} = 104.1 + 2.3X_1 + 15.7X_2 + 38.7X_3 + 30.1X_4$

• Forecasts for first two quarters next year

 $\hat{Y} = 104.1 + 2.3(13) + 15.7(0) + 38.7(0) + 30.1(0) = 134$ $\hat{Y} = 104.1 + 2.3(14) + 15.7(1) + 38.7(0) + 30.1(0) = 152$

- Regress Different from the results using the multiplicative decomposition method
 - Use MAD or MSE to determine the best model
- Forecasts for first two quarters next year

 $\hat{Y} = 104.1 + 2.3(13) + 15.7(0) + 38.7(0) + 30.1(0) = 134$ $\hat{Y} = 104.1 + 2.3(14) + 15.7(1) + 38.7(0) + 30.1(0) = 152$

 $\hat{Y} = 104$

Monitoring and Controlling Forecasts

- **Tracking signal** measures how well a forecast predicts actual values
 - Running sum of forecast errors (RSFE) divided by the MAD

Tracking signal =
$$\frac{RSFE}{MAD}$$

= $\frac{a(\text{forecast error})}{MAD}$
MAD = $\frac{a|\text{forecast error}|}{n}$

Monitoring and Controlling Forecasts

- Positive tracking signals indicate demand is greater than forecast
- Negative tracking signals indicate demand is less than forecast
- A good forecast will have about as much positive error as negative error
- Problems are indicated when the signal trips either the upper or lower predetermined limits
- Choose reasonable values for the limits

Monitoring and Controlling Forecasts

FIGURE 5.7 – Plot of Tracking Signals

Time

Kimball's Bakery Example

• Quarterly sales of croissants (in thousands)

TIME PERIOD	FORECAST DEMAND	ACTUAL DEMAND	ERROR	RSFE	FORECAST ERROR	CUMULATIVE ERROR	MAD	TRACKING SIGNAL
1	100	90	-10	-10	10	10	10.0	-1
2	100	95	-5	-15	5	15	7.5	-2
3	100	115	+15	0	15	30	10.0	0
4	110	100	-10	-10	10	40	10.0	-1
5	110	125	+15	+5	15	55	11.0	+0.5
6	110	140	+30	+35	35	85	14.2	+2.5

For Period 6: $MAD = \frac{\frac{|a||forecast error||}{n}}{n} = \frac{85}{6} = 14.2$ Tracking signal = $\frac{RSFE}{MAD} = \frac{35}{14.2} = 2.5$ MADs

Adaptive Smoothing

- Computer monitoring of tracking signals and self-adjustment if a limit is tripped
- In exponential smoothing, the values of α and β are adjusted when the computer detects an excessive amount of variation

Copyright

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.