

mhaptitr 5

Forecasting

To accompany
Quantitative Analysis for Management, Twelfth Edition, by Render, Stair, Hanna and Hale
Power Point slides created by Jeff Heyl

LEARNING OBJECTIVES

After completing this chapter, students will be able to:

1. Understand and know when to use various families of forecasting models.
2. Compare moving averages, exponential smoothing, and other time-series models.
3. Seasonally adjust data.
4. Understand Delphi and other qualitative decisionmaking approaches.
5. Compute a variety of error measures.

CHAPTER OUTLINE

5.1 Introduction
5.2 Types of Forecasting Models
5.3 Components of a Time Series
5.4 Measures of Forecast Accuracy
5.5 Forecasting Models - Random Variations Only
5.6 Forecasting Models - Trend and Random Variations
5.7 Adjusting for Seasonal Variations
5.8 Forecasting Models - Trend, Seasonal, and Random Variations
5.9 Monitoring and Controlling Forecasts

Introduction

- Main purpose of forecasting
- Reduce uncertainty and make better estimates of what will happen in the future
- Subjective methods
- Seat-of-the pants methods, intuition, experience
- More formal quantitative and qualitative techniques

Forecasting Models

FIGURE 5.1

Qualitative Models

- Incorporate judgmental or subjective factors
- Useful when subjective factors are important or accurate quantitative data is difficult to obtain
- Common qualitative techniques

1. Delphi method
2. Jury of executive opinion
3. Sales force composite
4. Consumer market surveys

Qualitative Models

- Delphi Method
- Iterative group process
- Respondents provide input to decision makers
- Repeated until consensus is reached
- Jury of Executive Opinion
- Collects opinions of a small group of highlevel managers
- May use statistical models for analysis

Qualitative Models

- Sales Force Composite
- Allows individual salespersons estimates
- Reviewed for reasonableness
- Data is compiled at a district or national level
- Consumer Market Survey
- Information on purchasing plans solicited from customers or potential customers
- Used in forecasting, product design, new product planning

Time-Series Models

- Predict the future based on the past
- Uses only historical data on one variable
- Extrapolations of past values of a series
- Ignores factors such as
- Economy
- Competition
- Selling price

Components of a Time Series

- Sequence of values recorded at successive intervals of time
- Four possible components
- Trend (T)
- Seasonal (S)
- Cyclical (C)
- Random (R)

Components of a Time Series

FIGURE 5.2 Scatter Diagram for Four Time Series of Quarterly Data

Series 4: Trend, Seasonal and Random Variations

Components of a Time Series

FIGURE 5.3 - Scatter Diagram of Times Series with Cyclical and Random Components

Time-Series Models

- Two basic forms
- Multiplicative

$$
\text { Demand }=T \times S \times C \times R
$$

- Additive

$$
\text { Demand }=T+S+C+R
$$

- Combinations are possible

Measures of Forecast Accuracy

- Compare forecasted values with actual values
- See how well one model works
- To compare models

Forecast error = Actual value - Forecast value

- Measure of accuracy
- Mean absolute deviation (MAD):

$$
\mathrm{MAD}=\frac{\mid \text { forecast error } \mid}{n}
$$

Measures of Forecast Accuracy

TABLE 5.1 - Computing the Mean Absolute Deviation (MAD)

YEAR	ACTUAL SALES OF WIRELESS SPEAKERS	FORECAST SALES	ABSOLUTE VALUE OF ERRORS (DEVIATION), (ACTUAL - FORECAST)
1	110	-	
2	100	110	
3	120	100	
4	140	120	
5	170	140	
6	150	170	
7	160	150	
8	190	190	
9	200	190	
10	190		

Measures of Forecast Accuracy

TABLE 5.1 - Computing the Mean Absolute Deviation (MAD)

| | ACTUAL
 SALES OF
 WIRELESS | FORECAST |
| :---: | :---: | :---: | :--- |
| SPEAKERS | | |
| SALES | | |\quad • Forecast based On

$\mathrm{MAD}=\frac{\mid \text { forecast error } \mid}{n}=\frac{160}{9}=17.8$

Accuracy

YEAR	ACTUAL SALES OF WIRELESS SPEAKERS	FORECAST SALES	ABSOLUTE VALUE OF ERRORS (DEVIATION), (ACTUAL - FORECAST)
1	110	-	-
2	100	110	$\|100-110\|=10$
3	120	100	$\|120-110\|=20$
4	140	120	$\|140-120\|=20$
5	170	140	$\|170-140\|=30$
6	150	170	$\|150-170\|=20$
7	160	150	$\|160-150\|=10$
8	190	160	$\|190-160\|=30$
9	200	190	$\|200-190\|=10$
10	190	200	$\|190-200\|=10$
11	-	190	-
			$\begin{aligned} & \text { Sum of \|errors\| }=160 \\ & M A D=160 / 9=17.8 \end{aligned}$

Measures of Forecast Accuracy

- Other common measures
- Mean squared error (MSE)

$$
\text { MSE }=\frac{(\text { error })^{2}}{n}
$$

- Mean absolute percent error (MAPE)

$$
\text { MAPE }=\frac{\left|\frac{\text { error }}{\text { actual }}\right|}{n} 100 \%
$$

- Bias is the average error

Forecasting Random Variations

- No other components are present
- Averaging techniques smooth out forecasts
- Moving averages
- Weighted moving averages
- Exponential smoothing

Moving Averages

- Used when demand is relatively steady over time
- The next forecast is the average of the most recent n data values from the time series
-Smooths out short-term irregularities in the data series

Moving Averages

- Mathematically

$$
F_{t+1}=\frac{Y_{t}+Y_{t 1}+\ldots+Y_{t n+1}}{n}
$$

where

$$
\begin{aligned}
F_{t+1} & =\text { forecast for time period } t+1 \\
Y_{t} & =\text { actual value in time period } t \\
n & =\text { number of periods to average }
\end{aligned}
$$

Wallace Garden Supply

- Wallace Garden Supply wants to forecast demand for its Storage Shed
- Collected data for the past year
- Use a three-month moving average ($n=3$)

Wallace Garden Supply

TABLE 5.2

MONTH	ACTUAL SHED SALES	3-MONTH MOVING AVERAGE
January	10	
February	12	
March	13	$(10+12+13) / 3=11.67$
April	16	$(12+13+16) / 3=13.67$
May	19	$(13+16+19) / 3=16.00$
June	23	$(16+19+23) / 3=19.33$
July	26	$(19+23+26) / 3=22.67$
August	30	$(23+26+30) / 3=26.33$
September	28	$(26+30+28) / 3=28.00$
October	18	$(30+28+18) / 3=25.33$
November	16	$(28+18+16) / 3=2067$
December	14	$(18+16+14) / 3=16.00$

Weighted Moving Averages

- Weighted moving averages use weights to put more emphasis on previous periods
- Often used when a trend or other pattern is emerging

$$
F_{t+1}=\frac{(\text { Weight in period } i)(\text { Actual value in period })}{(\text { Weights })}
$$

- Mathematically

$$
F_{t+1}=\frac{w_{1} Y_{t}+w_{2} Y_{t 1}+\ldots+w_{n} Y_{t n+1}}{w_{1}+w_{2}+\ldots+w_{n}}
$$

where

$$
w_{i}=\text { weight for the } i^{\text {th }} \text { observation }
$$

Wallace Garden Supply

- Use a 3-month weighted moving average model to forecast demand
- Weighting scheme

Wallace Garden Supply

TABLE 5.3

MONTH	ACTUAL SHED SALES	3-MONTH WEIGHTED MOVING AVERAGE
January	10	
February	12	$[(3 \times 13)+(2 \times 12)+(10)] / 6=12.17$
March	13	$[(3 \times 16)+(2 \times 13)+(12)] / 6=14.33$
April	16	$[(3 \times 19)+(2 \times 16)+(13)] / 6=17.00$
May	19	$[(3 \times 23)+(2 \times 19)+(16)] / 6=20.50$
June	23	$[(3 \times 26)+(2 \times 23)+(19)] / 6=23.83$
July	26	$[(3 \times 30)+(2 \times 26)+(23)] / 6=27.50$
August	30	$[(3 \times 28)+(2 \times 30)+(26)] / 6=28.33$
September	28	$[(3 \times 18)+(2 \times 28)+(30)] / 6=23.33$
October	18	$[(3 \times 16)+(2 \times 18)+(28)] / 6=18.67$
November	16	$[(3 \times 14)+(2 \times 16)+(18)] / 6=15.33$
December	14	
January	-	

Exponential Smoothing

- Exponential smoothing
- A type of moving average
- Easy to use
- Requires little record keeping of data

New forecast = Last period's forecast $+\alpha$ (Last period's actual demand

- Last period's forecast)
α is a weight (or smoothing constant) with a value $0 \leq \alpha \leq 1$

Exponential Smoothing

- Mathematically

$$
F_{t+1}=F_{t}+\left(\begin{array}{ll}
Y_{t} & F_{t}
\end{array}\right)
$$

where

$$
\begin{aligned}
F_{t+1} & =\text { new forecast (for time period } t+1) \\
Y_{t} & =\text { pervious forecast (for time period } \mathrm{t}) \\
\alpha & =\text { smoothing constant }(0 \leq \alpha \leq 1) \\
Y_{t} & =\text { pervious period's actual demand }
\end{aligned}
$$

The idea is simple - the new estimate is the old estimate plus some fraction of the error in the last period

Exponential Smoothing Example

- In January, February's demand for a certain car model was predicted to be 142
- Actual February demand was 153 autos
- Using a smoothing constant of $\alpha=0.20$, what is the forecast for March?

New forecast (for March demand) $=142+0.2(153-142)$
$=144.2$ or 144 autos

- If actual March demand = 136

New forecast (for April demand) $=144.2+0.2(136-144.2)$
$=142.6$ or 143 autos

Selecting the Smoothing Constant

- Selecting the appropriate value for α is key to obtaining a good forecast
- The objective is always to generate an accurate forecast
- The general approach is to develop trial forecasts with different values of α and select the α that results in the lowest MAD

Port of Baltimore Example

TABLE 5.4 - Exponential Smoothing Forecast for $\alpha=0.1$ and $\alpha=0.5$

ACTUAL TONNAGE			
QUARTER	FORECAST UNLOADED	FORECAST USING $\alpha=0.10$	$\alpha=0.50$
1	180	175	175
2	168	$175.5=175.00+0.10(180-175)$	177.5
3	159	$174.75=175.50+0.10(168-175.50)$	172.75
4	175	$173.18=174.75+0.10(159-174.75)$	165.88
5	190	$173.36=173.18+0.10(175-173.18)$	170.44
6	205	$175.02=173.36+0.10(190-173.36)$	180.22
7	180	$178.02=175.02+0.10(205-175.02)$	192.61
8	182	$178.22=178.02+0.10(180-178.02)$	186.30
9	$?$	$178.60=178.22+0.10(182-178.22)$	184.15

Port of Baltimore Example

TABLE 5.5 - Absolute Deviations and MADs

Best choice

Using Software

PROGRAM 5.1A - Selecting the Forecasting Model

Using Software

PROGRAM 5.1B - Initializing Excel QM

Using Software

PROGRAM 5.1C - Excel QM Output

	Wallace Garden Sup\|			Enter the demand data and the weights. The calculations will automatically be performed.				
1								
3	Forecasting		Weighted moving averages - 3 period moving average					
4	Enter the data in the shaded area. Enter weights in INCREASING order from top to bottom							
5								
6								
7	Data	Demand		Forecasts and Error Analysis				
8	Period		Weights	Forecast	Error	Absolute	Squared	Abs Pct Err
9	Period 1	10	1	1 -				
10	Period 2	12	2	2				
11	Period 3	13	3	3				
12	Period 4	16		12.16667	3.833333	3.833333	14.69444	23.96\%
13	Period 5	19		14.33333	4.666667	4.666667	21.77778	24.56\%
14	Period 6	23		17	6	6	36	26.09\%
15	Period 7	26		20.5	5.5	5.5	30.25	21.15\%
16	Period 8	30		23.83333	6.166667	6.166667	38.02778	20.56\%
17	Period 9	28		The measures of accuracy are shown here.				
18	Period 10	18						
19	Period 11	16		23.33333	-1.33333	1.333333	53.17118	45.83\%
20	Period 12	14		18.66667	-4.66667	4.666667	21.77778	33.33\%
The forecast for the next period is here.					4.333333	49	323.3333	254.68\%
					0.481481	5.444444	35.92593	28.30\%
					Bias	MAD	MSE	MAPE
24						SE	6.796358	
25	Next peri	15.3333333						

Using Software

PROGRAM 5.2A - Selecting Time-Series Analysis in QM for Windows

csing sorne

PROGRAM 5.2B - Entering Data

csing sorne

PROGRAM 5.2C - Selecting the Model and Entering Data

)sing sornater

PROGRAM 5.2D - Output for Port of Baltimore Example

Forecasting - Trend and Random

- Exponential smoothing does not respond to trends
- A more complex model can be used
- The basic approach
- Develop an exponential smoothing forecast
- Adjust it for the trend

Forecast including $=$ Smoothed forecast $\left(F_{t+1}\right)$ trend $\left(F I T_{t+1}\right)=+$ Smoothed Trend $\left(T_{t+1}\right)$

Exponential Smoothing with Trend

- The equation for the trend correction uses a new smoothing constant β
- F_{t} and T_{t} must be given or estimated
- Three steps in developing FIT ${ }_{t}$

Step 1: Compute smoothed forecast F_{t+1}

$$
\begin{aligned}
& \begin{array}{l}
\text { Smoothed } \\
\text { forecast }
\end{array}=\begin{array}{c}
\text { Previous forecast } \\
\text { including trend }
\end{array}+\alpha \text { (Last error) } \\
& \qquad F_{t+1}=F I T_{t}+\left(Y_{t} \quad F I T_{t}\right)
\end{aligned}
$$

Exponential Smoothing with Trend

Step 2: Update the trend $\left(T_{t+1}\right)$ using

$$
\begin{gathered}
\begin{array}{c}
\text { Smoothed } \\
\text { forecast }
\end{array}=\begin{array}{c}
\text { Previous forecast } \\
\text { including trend }
\end{array}+\begin{array}{c}
\beta(\text { Error or } \\
\text { excess in trend })
\end{array} \\
\\
T_{t+1}=T_{t}+\left(F_{t+1} \quad F I T_{t}\right)
\end{gathered}
$$

Step 3: Calculate the trend-adjusted exponential smoothing forecast $\left(F I T_{t+1}\right)$ using
$\begin{array}{r}\text { Forecast including } \\ \text { trend }\left(F I T_{t+1}\right)\end{array}=\begin{gathered}\text { Smoothed } \\ \text { forecast }\left(F_{t+1}\right)\end{gathered}+\begin{gathered}\text { Smoothed } \\ \text { trend }\left(T_{t+1}\right)\end{gathered}$

$$
F I T_{t+1}=F_{t+1}+T_{t+1}
$$

Selecting a Smoothing Constant

- A high value of β makes the forecast more responsive to changes in trend
- A low value of β gives less weight to the recent trend and tends to smooth out the trend
- Values are often selected using a trial-anderror approach based on the value of the MAD for different values of β

Midwestern Manufacturing

- Demand for electrical generators from 2007-2013
- Midwest assumes F_{1} is perfect, $T_{1}=0, \alpha=0.3, \beta=0.4$

$$
F I T_{1}=F_{1}+T_{1}=74+0=74
$$

TABLE 5.6 -	YEAR	ELECTRICAL GENERATORS SOLD
Demand	2007	74
	2008	79
	2009	80
	2010	90
	2011	105
	2012	142
	2013	122

Midwestern Manufacturing

For 2008 (time period 2)
Step 1: Compute F_{t+1}

$$
\begin{gathered}
F_{2}=F I T_{1}+\alpha\left(Y_{1}-F I T_{1}\right) \\
=74+0.3(74-74)=74
\end{gathered}
$$

Step 2: Update the trend

$$
\begin{aligned}
T_{2} & =T_{1}+\beta\left(F_{2}-F I T_{1}\right) \\
& =0+.4(74-74)=0
\end{aligned}
$$

Midwestern Manufacturing

Step 3: Calculate the trend-adjusted exponential smoothing forecast $\left(F_{t+1}\right)$ using

$$
\begin{aligned}
F I T_{2} & =F_{2}+T_{2} \\
& =74+0=74
\end{aligned}
$$

Midwestern Manufacturing

For 2009 (time period 3)
Step 1: $\quad F_{3}=F I T_{2}+\alpha\left(Y_{2}-F I T_{2}\right)$

$$
=74+0.3(79-74)=75.5
$$

Step 2: $\quad T_{3}=T_{2}+.4\left(F_{3}-F I T_{2}\right)$

$$
=0+.4(75.5-74)=0.6
$$

Step 3: FIT $_{3}=F_{3}+T_{3}$

$$
=75.5+0.6=76.1
$$

Midwestern Manufacturing

TABLE 5.7 - Exponential Smoothing with Trend Forecasts

$\begin{gathered} \text { TIME } \\ (t) \end{gathered}$	DEMAND $\left(Y_{t}\right)$	$F_{t+1}=F I T_{t}+0.3\left(Y_{t}-F I T_{t}\right)$	$T_{t+1}=T_{t}+0.4\left(F_{t+1}-F I T_{t}\right)$	$F I T_{t+1}=F_{t+1}+T_{t+1}$
1	74	74	0	74
2	79	$\begin{aligned} & 74 \\ & =74+0.3(74-74) \end{aligned}$	$\begin{array}{r} 0 \\ =0+0.4(74-74) \end{array}$	$\begin{aligned} & 74 \\ & =74+0 \end{aligned}$
3	80	$\begin{aligned} & 75.5 \\ & \quad=74+0.3(79-74) \end{aligned}$	$\begin{aligned} & 0.6 \\ & =0+0.4(75.5-74) \end{aligned}$	$\begin{aligned} & 76.1 \\ & \quad=75.5+0.6 \end{aligned}$
4	90	$\begin{aligned} & 77.270 \\ & \quad=76.1+0.3(80-76.1) \end{aligned}$	$\begin{aligned} & 1.068 \\ & =0.6+0.4(77.27-76.1) \end{aligned}$	$\begin{aligned} & 78.338 \\ & =77.270+1.068 \end{aligned}$
5	105	$\begin{aligned} & 81.837 \\ & =78.338+0.3(90-78.338) \end{aligned}$	$\begin{aligned} & 2.468 \\ & =1.068+0.4(81.837-78.338) \end{aligned}$	$\begin{aligned} & 84.305 \\ & \quad=81.837+2.468 \end{aligned}$
6	142	$\begin{aligned} & 90.514 \\ & \quad=84.305+0.3(105-84.305) \end{aligned}$	$\begin{aligned} & 4.952 \\ & =2.468+0.4(90.514-84.305) \end{aligned}$	$\begin{aligned} & 95.466 \\ & =90.514+4.952 \end{aligned}$
7	122	$\begin{aligned} & 109.426 \\ & =95.446+0.3(142-95.466) \end{aligned}$	$\begin{aligned} & 10.536 \\ & =4.952+0.4(109.426-95.466) \end{aligned}$	$\begin{aligned} & 119.962 \\ & =109.426+10.536 \end{aligned}$
8		$\begin{aligned} & 120.573 \\ & =119.962+0.3(122-119.962) \end{aligned}$	$\begin{aligned} & 10.780 \\ & =10.536+0.4(120.573-119.962) \end{aligned}$	$\begin{aligned} & 131.353 \\ & =120.573+10.780 \end{aligned}$

Midwestern Manufacturing

PROGRAM 5.3 - Output from Excel QM Trend-Adjusted Exponential Smoothing

	A	B	C	D	E	F	G	H	I	J
1	Midwestern Manufacturing Company Example									
2										
3	Forecasting	Trend adjusted exponential smoothing								
4 5	Enter alpha and beta (between 0 and 1), enter the past demands in the shaded column then enter a starting forecast. If the starting forecast is not in the first period then delete the error analysis for									
7	Alpha	0.3								
8	Beta	0.4								
9	Data		Forecasts and Error Analysis							
10	Period	Demand		Smoothed Forecast, F_{t}	Smoothed Trend, T_{t}	Forecast Including Trend, FIT	Error	Absolute	Squared	Abs Pct Err
11	Period 1	74		74		74	0	0	0	00.00\%
12	Period 2	79		74	0	74	5	5	25	06.33\%
13	Period 3	80		75.5	0.6	76.1	3.9	3.9	15.21	04.88\%
14	Period 4	90		77.27	1.068	78.338	11.662	11.662	136.0022	12.96\%
15	Period 5	105		81.8366	2.46744	84.30404	20.69596	20.696	428.3228	19.71\%
16	Period 6	142		90.512828	4.950955	95.4637832	46.53622	46.5362	2165.619	32.77\%
17	Period 7	122		109.4246482	10.5353	119.959949	2.040051	2.04005	4.161806	0.016722
18		Next period		120.5719646	10.78011	131.352072				
19				Total			89.83423	89.8342	2774.316	78.32\%
20							12.83346	12.8335	396.3309	11.19\%
21		The forecast for next period is here.					Bias	MAD	MSE	MAPE
22								SE	23.55554	

Trend Projections

- Fits a trend line to a series of historical data points
- Projected into the future for medium- to long-range forecasts
- Trend equations can be developed based on exponential or quadratic models
- Linear model developed using regression analysis is simplest

Trend Projections

- Mathematical formula

$$
\hat{Y}=b_{0}+b_{1} X
$$

where

$$
\begin{aligned}
\hat{Y} & =\text { predicted value } \\
b_{0} & =\text { intercept } \\
b_{1} & =\text { slope of the line } \\
X & =\text { time period (i.e., } X=1,2,3, \ldots, n \text {) }
\end{aligned}
$$

Midwestern Manufacturing

- Based on least squares regression, the forecast equation is

$$
\hat{Y}=56.71+10.54 X
$$

- Year 2014 is coded as $X=8$

$$
\begin{aligned}
(\text { sales in 2014) } & =56.71+10.54(8) \\
& =141.03, \text { or } 141 \text { generators }
\end{aligned}
$$

- For $X=9$

$$
\begin{aligned}
(\text { sales in 2015) } & =56.71+10.54(9) \\
& =151.57, \text { or } 152 \text { generators }
\end{aligned}
$$

Midwestern Manufacturing

PROGRAM 5.4 - Output from Excel QM for Trend Line

	A	B	c	D	E	F	G	H	I
1	Midwestern Manufacturing Company Example								
2									
3	Forecasting		Simple linear regression						
4 5 6	If this is trend analysis then simply enter the past demands in the demand column. If this is causal regression then enter the y, x pairs with y first and enter a new value of x at the bottom in order to								
7									
8	Data				Forecasts and Error Analysis				
9	Period Demand (y) Period(x)				Forecast	Error	Absolute	Squared	Abs Pct Ert
10	Period 1	74	1		67.25	6.75	6.75	45.5625	09.12\%
11	Period 2	79	2		77.7857	1.2143	1.2143	1.4745	01.54\%
12	Period 3	80	3						10.40\%
13	Period 4	90	4		orecas	other	time per	ods,	09.84\%
131415	Period 5	105	5		r the tim	ime per	riod here		04.18\%
	Period 6	142	6						15.54\%
16	Period 7	122	7		130.4643	-8.4643	8.4643	71.6441	06.94\%
16					Total	-4.3E-14	60.0714	772.8214	57.57\%
18	Intercept	56.7143			Average	-6.1E-15	8.5816	110.4031	08.22\%
	Slope	10.5357				Bias	MAD	MSE	MAPE
19							SE	12.4324	
20	Forecast	-141							
	The forecast for next period is here. \square								

Midwestern Manufacturing

PROGRAM 5.5 - Output from QM for Trend Line

Midwestern Manufacturing

FIGURE 5.4 - Generator Demand Based on Trend Line

Seasonal Variations

- Recurring variations over time may indicate the need for seasonal adjustments in the trend line
- A seasonal index indicates how a particular season compares with an average season
- An index of 1 indicates an average season
- An index > 1 indicates the season is higher than average
- An index < 1 indicates a season lower than average

Seasonal Indices

- Deseasonalized data is created by dividing each observation by the appropriate seasonal index
- Once deseasonalized forecasts have been developed, values are multiplied by the seasonal indices
- Computed in two ways
- Overall average
- Centered-moving-average approach

Seasonal Indices with No Trend

- Divide average value for each season by the average of all data
- Telephone answering machines at Eichler Supplies
- Sales data for the past two years for one model
- Create a forecast that includes seasonality

Seasonal Indices with No Trend

TABLE 5.8 - Answering Machine Sales and Seasonal Indices

Seasonal Indices with No Trend

- Calculations for the seasonal indices

Jan.	$\frac{1,200}{12}$	$0.957=96$	July	$\frac{1,200}{12}$	$1.117=112$
Feb.	$\frac{1,200}{12}$	$0.851=85$	Aug.	$\frac{1,200}{12}$	$1.064=106$
Mar.	$\frac{1,200}{12}$	$0.904=90$	Sept.	$\frac{1,200}{12}$	$0.957=96$
Apr.	$\frac{1,200}{12}$	$1.064=106$	Oct.	$\frac{1,200}{12}$	$0.851=85$
May	$\frac{1,200}{12}$	$1.309=131$	Nov.	$\frac{1,200}{12}$	$0.851=85$
June	$\frac{1,200}{12}$	$1.223=122$	Dec.	$\frac{1,200}{12}$	$0.851=85$

Seasonal Indices with Trend

- Changes could be due to trend, seasonal, or random
- Centered moving average (CMA) approach prevents trend being interpreted as seasonal
- Turner Industries sales contain both trend and seasonal components

Seasonal Indices with Trend

- Steps in CMA

1. Compute the CMA for each observation (where possible)
2. Compute the seasonal ratio = Observation/CMA for that observation
3. Average seasonal ratios to get seasonal indices
4. If seasonal indices do not add to the number of seasons, multiply each index by (Number of seasons)/(Sum of indices)

Turner Industries

TABLE 5.9 - Quarterly Sales Data

QUARTER	YEAR 1	YEAR 2	YEAR 3	AVERAGE
1	108	116	123	115.67
2	125	134	142	133.67
3	150	159	168	159.00
4	141	152	165	152.67
Average	131.00	140.25	149.50	40.25
Definite trend $\begin{gathered}\text { Seasonal } \\ \text { pattern }\end{gathered}$				

Turner Industries

- To calculate the CMA for quarter 3 of year 1, compare the actual sales with an average quarter centered on that time period
- Use 1.5 quarters before quarter 3 and 1.5 quarters after quarter 3
- Take quarters 2, 3, and 4 and one half of quarters 1 , year 1 and quarter 1 , year 2

$$
\operatorname{CMA}(\mathrm{q} 3, \mathrm{y} 1)=\frac{0.5(108)+125+150+141+0.5(116)}{4}=132.0
$$

Turner Industries

- Compare the actual sales in quarter 3 to the CMA to find the seasonal ratio

Seasonal ratio $=\frac{\text { Sales in quarter } 3}{\text { CMA }}=\frac{150}{132.0}=1.136$

Turner Industries

TABLE 5.10 - Centered Moving Averages and Seasonal Ratios

YEAR	QUARTER	SALES	CMA	SEASONAL RATIO
1	1	108		
	2	125		
	3	150	132.000	1.136
	4	141	134.125	1.051
2	1	116	136.375	0.851
	2	134	138.875	0.965
	3	159	141.125	1.127
	4	152	143.000	1.063
	1	123	145.125	0.848
	2	142	147.875	0.960
	3	168		
	4	165		

Turner Industries

- The two seasonal ratios for each quarter are averaged to get the seasonal index

Index for quarter $1=I_{1}=(0.851+0.848) / 2=0.85$ Index for quarter $2=I_{2}=(0.965+0.960) / 2=0.96$ Index for quarter $3=I_{3}=(1.136+1.127) / 2=1.13$ Index for quarter $4=I_{4}=(1.051+1.063) / 2=1.06$

Turner Industries

- Scatterplot of Turner Industries Sales Data and Centered Moving Average

Trend, Seasonal, and Random Variations

- Decomposition - isolating linear trend and seasonal factors to develop more accurate forecasts
- Five steps to decomposition
- Compute seasonal indices using CMAs.
- Deseasonalize the data by dividing each number by its seasonal index
- Find the equation of a trend line using the deseasonalized data
- Forecast for future periods using the trend line
- Multiply the trend line forecast by the appropriate seasonal index

Deseasonalized Data

TABLE 5.11

SALES $(\$ 1,000,000 s)$	SEASONAL INDEX	DESEASONALIZED SALES (\$1,000,000s)
108	0.85	127.059
125	0.96	130.208
150	1.13	132.743
141	1.06	133.019
116	0.85	136.471
134	0.96	139.583
159	1.13	140.708
152	1.06	143.396
123	0.85	144.706
142	0.96	147.917
168	1.13	148.673
165	1.06	155.660

Deseasonalized Data

- Find a trend line using the deseasonalized data where $X=$ time

$$
\begin{gathered}
b_{1}=2.34 \quad b_{0}=124.78 \\
\hat{Y}=124.78+2.34 X
\end{gathered}
$$

- Develop a forecast for quarter 1 , year 4 ($X=13$) using this trend and multiply the forecast by the appropriate seasonal index

$$
\begin{aligned}
\hat{Y} & =124.78+2.34(13) \\
& =155.2 \text { (before seasonality adjustment) }
\end{aligned}
$$

Deseasonalized Data

- Find a trand linn weinnthn dnannonnnliand data wh

Including the seasonal index

$$
\hat{Y} \quad I_{1}=155.2 \quad 0.85=131.92
$$

- Develop a forecast for quarter 1 , year 4 ($X=13$) using this trend and multiply the forecast by the appropriate seasonal index

$$
\begin{aligned}
\hat{Y} & =124.78+2.34(13) \\
& =155.2 \text { (before seasonality) }
\end{aligned}
$$

Deseasonalized Data

FIGURE 5.5

Using Software

PROGRAM 5.6A - QM for Windows Input

Using Software

PROGRAM 5.6B - QM for Windows Output

Method Multiplicative Decomposition (seasonal)	The final forecast is obtained by multiplying the trend (unadjusted) forecast by the seasonal indices (factors).	The final forecast is obtained by multiplying the trend (unadjusted) forecast by the seasonal indices (factors).			
(fit Forecasting Results					
Measure	are		Unadjusted Forecast	Seasonal Factor	Forecast
Error Measures		13	155.25	0.849	131.81
Bias (Mean Error)	0.001	14	157.594	0.963	151.687
MAD (Mean Absolute Deviation)	0.905	15	159.937	1.131	180.959
MSE (Mean Squared Error)	1.7	16	162.281	1.057	171.535
Standard Error (denom=n-2-4=6)	1.844	17	164.625	0.849	139.769
MAPE (Mean Absolute Percent Error)	0.595\%	18	166.968	0.963	160.71
Regression line (unadjusted forecast)		19	169.312	1.131	191.566
Demand $(\mathrm{y})=124.784$		20	171.655	1.057	\|181.444
+ 2.344 * time		21	173.999	0.849	147.728
Statistics Correlation coeffici The trend line is shown Coefficient of detern here over two lines.		22	176.342	0.963	169.733
		23	178.686	1.131	202.172
		24	181.03	1.057	191.353
		25	183.373	0.849	155.686
		26	185.717	0.963	178.756

Using Regression with Trend and Seasonal

- Multiple regression can be used to forecast both trend and seasonal components
- One independent variable is time
- Dummy independent variables are used to represent the seasons
- An additive decomposition model

$$
\hat{Y}=a+b_{1} X_{1}+b_{2} X_{2}+b_{3} X_{3}+b_{4} X_{4}
$$

where

$$
\begin{aligned}
& X_{1}=\text { time period } \\
& x_{2}=1 \text { if quarter } 2,0 \text { otherwise } \\
& x_{3}=1 \text { if quarter } 3,0 \text { otherwise } \\
& x_{4}=1 \text { if quarter } 4,0 \text { otherwise }
\end{aligned}
$$

Using Regression with Trend and Seasonal

PROGRAM 5.7A - Excel QM Multiple Regression Initialization

Using Regression with Trend and Seasonal

PROGRAM 5.7B Excel QM Multiple Regression Output

Using Regression with Trend and Seasonal

- Regression equation

$$
\hat{Y}=104.1+2.3 X_{1}+15.7 X_{2}+38.7 X_{3}+30.1 X_{4}
$$

- Forecasts for first two quarters next year

$$
\begin{aligned}
& \hat{Y}=104.1+2.3(13)+15.7(0)+38.7(0)+30.1(0)=134 \\
& \hat{Y}=104.1+2.3(14)+15.7(1)+38.7(0)+30.1(0)=152
\end{aligned}
$$

Using Regression with Trend and Seasonal

- Regress
- Different from the results using the multiplicative decomposition method
- Use MAD or MSE to determine the $\hat{Y}=104$ best model
- Forecasts for first two quarters next year

$$
\begin{aligned}
& \hat{Y}=104.1+2.3(13)+15.7(0)+38.7(0)+30.1(0)=134 \\
& \hat{Y}=104.1+2.3(14)+15.7(1)+38.7(0)+30.1(0)=152
\end{aligned}
$$

Monitoring and Controlling Forecasts

- Tracking signal measures how well a forecast predicts actual values
- Running sum of forecast errors (RSFE) divided by the MAD

Tracking signal $=\frac{\text { RSFE }}{\text { MAD }}$
(forecast error)
MAD

$$
\text { MAD }=\frac{\mid \text { forecast error } \mid}{n}
$$

Monitoring and Controlling Forecasts

- Positive tracking signals indicate demand is greater than forecast
- Negative tracking signals indicate demand is less than forecast
- A good forecast will have about as much positive error as negative error
- Problems are indicated when the signal trips either the upper or lower predetermined limits
- Choose reasonable values for the limits

Monitoring and Controlling Forecasts

FIGURE 5.7 - Plot of Tracking Signals

Kimball's Bakery Example

- Quarterly sales of croissants (in thousands)
$\begin{array}{ccccc|c|ccc}\begin{array}{c}\text { TIME } \\ \text { PERIOD }\end{array} & \begin{array}{c}\text { FORECAST } \\ \text { DEMAND }\end{array} & \begin{array}{c}\text { ACTUAL } \\ \text { DEMAND }\end{array} & \text { ERROR }\end{array}$ RSFE $\left.\begin{array}{c}\text { |FORECAST } \\ \text { ERROR }\end{array} \begin{array}{c}\text { CUMULATIVE } \\ \text { ERROR }\end{array} \quad \begin{array}{c}\text { MAD }\end{array} \begin{array}{c}\text { TRACKING } \\ \text { SIGNAL }\end{array}\right]$

For Period 6:

$$
M A D=\frac{\mid \text { forecast error } \mid}{n}=\frac{85}{6}=14.2
$$

$$
\text { Tracking signal }=\frac{\text { RSFE }}{\mathrm{MAD}}=\frac{35}{14.2}=2.5 \mathrm{MADs}
$$

Adaptive Smoothing

- Computer monitoring of tracking signals and self-adjustment if a limit is tripped
- In exponential smoothing, the values of α and β are adjusted when the computer detects an excessive amount of variation

Copyright

> All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

