
Junping Sun 1 January 2014

INTRODUCTION TO ORACLE SQL*PLUS

by Junping Sun

Graduate School of Computer and Information Sciences
Nova Southeastern University

3301 College Avenue
Fort Lauderdale, Florida 33314-7796

E-mail: jps@nova.edu

Junping Sun 2 January 2014

What is ORACLE?

There are several major components as referred to the ORACLE DBMS software package as follows:

• ORACLE DBMS Server
 The major DBMS engine.

• ORACLE SQL*PLUS
 The user-friendly interactive SQL (structural query language) interface to access databases.

• ORACLE PL/SQL
 Combination of procedural language (PL) and structural query language (SQL).

• ORACLE SQL*FORMS
 The front-end application development tool.

• ORACLE SQL*REPORTWRITER
 Report generator.

• ORACLE SQL*NET
 Oracle client/server database connect tool.

• ORACLE Open Client Adapter for ODBC (Open Database Connectivity)
 Heterogeneous client/server database connect tool.

In this document, we will concentrate on the ORACLE SQL*PLUS because it is not only the
fundamental component in the ORACLE DBMS environment, but also a user-friendly interactive
interface from which you can start to learn about ORACLE DBMS.

Starting and Stopping SQL*PLUS:

This document describes how to use SQL*PLUS from the beginning. You should be able to follow
the examples in SQL*PLUS given here and to observe the results of executions.

At NSU, the computer on which the ORACLE DBMS resides is called oracle11g.

In order to use the ORACLE SQL*PLUS, you can login on scis (computer) first. After you login
on scis successfully, you will see the following at your scis prompt:

usercode@scis>

where the usercode is your login usercode and scis is the name of the computer.

To access SQL*PLUS, you just type oracle11g followed by either the return or the enter
key after the prompt usercode@scis> as the following:

usercode@scis> oracle11g

The ORACLE DBMS will display the messages for you to input both your ORACLE user-name and
password as follows:

Junping Sun 3 January 2014

 +--+
 | Welcome to Nova Southeastern University |
 | Office of Information and Technology (OIT) |
 | Oracle Database Server |
 | Running Oracle Enterprise Edition 11.1.0.6.0 64bit |
 | Please login with syntax : username@oracle11g |
 | Please contact oracle@nsu.nova.edu for account problems. |
 +--+

Executing SQL*PLUS...

SQL*Plus: Release 11.1.0.6.0 - Production on Mon Dec 29 12:07:34 2008

Copyright (c) 1982, 2007, Oracle. All rights reserved.

Enter user-name:
At the prompt of Enter user-name from ORACLE SQL*PLUS, please enter both your user-name
and the password in one line.

For example:

Enter user-name: username/password@oracle11g

Please note that the username is the same as your email usercode that you use to login on scis
unix; the password is followed by @oracle11g. The symbol ‘/’ is necessary to separate the
username and the password in the connecting string.

If you enter both the user-name and the password correctly, then the system will display the
followings:

Connected to:
Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - 64bit
Production
With the Partitioning, OLAP, Data Mining and Real Application
Testing options

SQL>

When it prompts SQL>, the system is ready for you to enter either a SQL statement or a SQL*PLUS
command.

A SQL statement is the statement that complies with the syntax rule of SQL. A list of SQL
statements such as create, delete, insert, select, and update will be frequently used.

The SQL*PLUS commands are the auxiliary set of commands that may be only recognized by
ORACLE SQL*PLUS. Frequently used commands in ORACLE SQL*PLUS interface are clear,
describe, edit, get, help, list, save, spool, and run.
To quit and end the SQL*PLUS session, you could use either the exit or the quit SQL*PLUS
command after the prompt of SQL>.

Junping Sun 4 January 2014

In the next, we illustrate both how to use SQL statements to access a database and how to use the
auxiliary set of interface SQL*PLUS commands.

To Retrieve Data from a Database Table:

To print out the data from the database table, the employee table owned by the user jps, simply
type the following statement at the prompt SQL>.

select * from jps.employee;

After you type the statement followed by either the return or the enter key, the system will
automatically execute the SQL statement and display the result from the execution on your screen.

In the above statement, there are two clauses as follows:

The select clause: select *

The from clause: from jps.employee;

The select clause will include all the columns from the jps.employee table in the result
table, and the from clause indicates the jps.employee table where the data records or the tuples
will be retrieved. Here, the symbol '*' in the select clause implies all the column names in the
jps.employee table, i.e., the values of all the columns in the table will be retrieved and displayed
as the result from the execution of the select SQL statement.

In order to improve the readability, you could enter the select statement in several lines such that
each line contains one clause as follows:

SQL> select *
 2 from jps.employee;

First, after the prompt SQL>, you can type the select clause, select *, with entering either the
return or enter key at the end of the current line. The system will prompt the line number, 2,
with the cursor at the beginning of line 2.

Second, you can enter the from clause, from jps.employee, in line 2. Also please note that
there is a semicolon at the end of the from clause.

• The semicolon at the end of the second clause means the end of the whole select statement.

• After a SQL statement is entered, the SQL statement will be kept in a specific place called

SQL*PLUS buffer or memory buffer, but the SQL*PLUS command will not. There is also a
corresponding file named afiedt.buf that is used to save the current content in the buffer.

• From the point view of SQL syntax rules, you need to put a semicolon at the end of each SQL

statement to indicate the end of the statement, especially, there are multiple SQL statements for
the execution in the buffer. In some situation, the semicolon of the last SQL statement can be
omitted. This also applies to the situation where only one SQL statement is executed at one time.

If you key in the statement correctly, the system will display the data in the employee table owned
by the user jps.

Junping Sun 5 January 2014

NAME SSN BDATE SEX SALARY SUPERSSN DNO
------------------ --------- ---------- ---- ------- --------- ---
John B Smith 123456789 09-JAN-55 M 30000 333445555 5
Franklin T Wong 333445555 08-DEC-45 M 40000 888665555 5
Alicia J Zelaya 999887777 19-JUL-85 F 25000 987654321 4
Jennifer S Wallace 987654321 20-JUN-31 F 43000 888665555 4
Ramesh K Narayan 666884444 15-SEP-52 M 38000 333445555 5
Joyce A English 453453453 31-JUL-62 F 25000 333445555 5
Ahmad V Jabbar 987987987 29-MAR-59 M 25000 987654321 4
James E Borg 888665555 10-NOV-27 M 55000 1

8 rows selected.

What is displayed on your screen is the data in the jps.employee table owned by user jps.

If you do not succeed in the execution, then there might be some typos. At this time, it is better to
use the command clear buffer to remove the old statement in the SQL*PLUS buffer before
you key in a new statement. Later on, we will discuss how to use editor to correct the errors in the
SQL*PLUS buffer.

To clear the SQL*PLUS buffer, type the command clear after the prompt SQL>.

SQL> clear buffer

It is also a good practice to clear the SQL*PLUS buffer before you start entering any new statement.

Check the Relations or Tables in a Database:

There are two types of relations or tables in a database. One is the set of tables created by yourself,
and another is the set of tables created by some other users as we just see. In order to access the
tables created by others, you need to be granted the access privilege by either the DBA (database
administrator) or the original user who creates these tables. Next, we will learn how to find out not
only a list of tables created by yourself, but also a list of tables that are created by other users and
granted for you to access.

To display a list of tables created by yourself, type the following line after the prompt SQL>:

SQL> select *
 2 from tab
 3 where tabtype = 'TABLE';

no rows selected

If you key in everything correctly, the system will display the message such that "no rows
selected," i.e., there is nothing retrieved from the execution of the select statement. That is true
since you have not created any table yet. Please note that the constant string 'TABLE' is different
from the constant 'table' in the where clause because the string constant enclosed within both the
left single quote and the right single quote are case-sensitive. Since the internal representations of
upper case letters in computer systems are different from those of lower case letters.

Another way to view the list of tables created by yourself is to use the following command:

SQL> select *
 2 from system.tab;

Junping Sun 6 January 2014

Although you have not created any table, you may have been granted the access to other tables
created by some other users. To find it out if you are granted the access to the tables created by
some user, for example, jps, type the select statement as follows:

SQL> select object_name, object_type
 2 from all_objects
 3 where owner = 'JPS' and object_type = 'TABLE';

OBJECT_NAME OBJECT_TYPE
-------------------- --------------------
DEPARTMENT TABLE
DEPENDENT TABLE
DEPTLOCATION TABLE
EMPLOYEE TABLE
PROJECT TABLE
R
S
WORKSON

TABLE
TABLE
TABLE

8 rows selected.

Please note that the constant string JPS is capitalized in the where clause,

where owner = 'JPS'

You need to type the following command after the prompt SQL> in order to find out the attribute
types in the table jps.employee owned by jps,

SQL> describe jps.employee;

Name Null? Type
------------------- --------------- -------------------
NAME NOT NULL VARCHAR2(19)
SSN NOT NULL CHAR(9)
BDATE DATE
SEX CHAR(3)
SALARY NUMBER(8,2)
SUPERSSN CHAR(9)
DNO VARCHAR2(8)

6 rows selected.
The describe command displays not only the names of all the columns but also the corresponding
data types of all the columns in a table. The 'NOT NULL' in the second column from the left
indicates that the NULL values are not allowed in both NAME and SSN column entries from the
jps.employee table.

Please try the following commands one by one after the prompt SQL>,

describe jps.department;

describe jps.dependent;

describe jps.deptlocation;

Junping Sun 7 January 2014

describe jps.project;

describe jps.workson;

describe jps.r;

describe jps.s;

After you finish the above commands, type in the following SQL statements one by one to print out
the data in each table.

select *
from jps.employee;

select *
from jps.department;

select *
from jps.dependent;

select *
from jps.deptlocation;

select *
from jps.project;

select *
from jps.workson;

select *
from jps.r;

select *
from jps.s;

Up to now we have learned how to print out both the description of a table structure (relation
schema) and the data in a table (relation). We will learn more about the SQL*PLUS commands
before we learn more about the SQL (Structural Query Language).

The SQL*PLUS Commands:

In general, the set of SQL*PLUS commands is independent of the ANSI-SQL standard, i.e., it is the
set of proprietary commands in ORACLE SQL*PLUS interface. There is no guarantee that the set of
proprietary commands in ORACLE SQL*PLUS will be supported by other relational DBMS.

All the SQL*PLUS commands must be issued after the SQL> prompt instead of the line number
prompt. Some of the SQL*PLUS commands require the argument(s) and some of them do not.

If the current prompt is the line number instead of the prompt SQL>, just hit either the return or the
enter key to switch from the line number prompt to the SQL> prompt.

The following is the list of frequently used SQL*PLUS commands:

Junping Sun 8 January 2014

clear, describe, edit, get, help, list, run, save, spool, and start.
clear buffer

The clear command removes all the contents in the SQL*PLUS buffer and reset the buffer.

describe tablename

The describe command displays all the attribute names and the attribute types in the table
tablename.

Example:

describe jps.project;

It will display all the attribute names and attribute types in the table jps.project.

edit

The edit command will invoke the default system editor. If you find the errors in the SQL
statement, you could use the edit command to correct these errors in the SQL statement. Before
exiting the edit session, you need to save the changes that you make during the editing session.

The current default editor in our system is PICO. You could redefine the default editor by using the
define_editor command.

To redefine the default system editor as the vi editor, just type the followings after the prompt
SQL>,

define_editor = "vi"

get filename

The get command will load the file filename under your current working directory to the
SQL*PLUS buffer. After the file is loaded successfully by get command, the content in the file will
be listed and displayed on the screen.

help

The help command will display the on-line help menu in the SQL*PLUS. The on-line help menu
is self-contained and very easy to read.

list

The list command will display on the screen the current contents in the SQL*PLUS buffer.

run

The run command will list the current contents in the SQL*PLUS buffer and execute it.

There are three ways to execute the SQL statement in the SQL*PLUS buffer:

1. Put the semicolon at the end of the SQL statement.

Junping Sun 9 January 2014

 The current SQL statement in the SQL*PLUS buffer will be automatically executed after you put

the semicolon at the end of the SQL statement with following either return or enter key.
This will apply to the situation when you just type in a new SQL statement and want to execute it
immediately.

 Example:

 SQL> select *
 2 from jps.employee;

2. If you did not put the semicolon at the end of the SQL statement and the current cursor is at the

beginning of the next line below the SQL statement, put the forward slash /.
 This will apply to the situation where there is no semicolon at the end of the SQL statement and

the cursor has been moved to the next line below the SQL statement.

 Example:

 SQL> select *
 2 from jps.employee
 3 /

3. You can use either run or forward slash / command to execute the SQL statement in the

SQL*PLUS buffer after you finish editing the SQL statement with the default system editor.

 • The run command must be issued after the prompt SQL>, i.e., you must switch from the

line number prompt to the SQL> prompt by hitting either the return or enter key
before issuing the run command to execute SQL statement in the buffer. Please see the
following example:

 SQL> select *
 2 from jps.employee
 3 <enter key> or <return key>
 SQL> run

 • The forward slash / command is different from the run command in that the forward slash
/ will not list the current contents in the SQL*PLUS buffer before the execution.

• The forward slash / command can be used after either the line number prompt or the SQL>

prompt.

save filename

The save command will save the current contents of the SQL*PLUS buffer into the file
filename in your current working directory on scis unix.

save filename replace

The save command with the keyword replace at the end of the command line will overwrite
the current content in the file filename with the current content in the buffer.

Junping Sun 10 January 2014

spool

The spool command can be used to save a SQL*PLUS session into a file.

To start the spool session, simple type spool filename.lst after the prompt SQL>.

To end the spool session, simple type spool off after the prompt SQL>.

Any session information such as both SQL statement entered from the keyboard and its execution
result between the command line spool filename.lst and the command line spool off
will be saved in the file filename.lst. If the file extension .lst is omitted, the system will
automatically append it for you.

Example:

SQL> spool log.lst

SQL> select *
SQL> from jps.employee;

SQL> spool off

In this example, the SQL statement and its execution result will be spooled or saved into the file with
the name log.lst.

Please note that the spool off command will terminate the spooling session, and each spool
off command matches the latest spool filename.lst command (beginning of the
spooling session).

If you start a new spooling session with the existing file name, the new spooling contents will
overwrite the contents in the existing file.

If you use the command spool with the option append, then the new spooling session contents
will be appended to the end of the existing file.

Example:

SQL> spool log.lst append

SQL> select *
SQL> from jps.employee;

SQL> spool off
The new contents with the select statement and its execution result will be appended to the end of
the file log.lst.

start filename

The start command can be used to load one or more SQL statements stored in a file under your
current working directory and to execute the SQL statement(s) immediately after loading. You should
put a semicolon at the end of each SQL statement except the last SQL statement in the sequence if
there are several SQL statements in the loaded file.

Junping Sun 11 January 2014

Operations in the Relational Database Model:

In the traditional relational database model, there are eight operations such as select, project, join
(theta-join), union, intersect, minus, product, and division. There is no commercial relational DBMS
product that directly supports the division operation. The indirect implementation method in the
SQL can support the division operation defined in the relational database model. The ORACLE
DBMS supports outer join, and transitive closure operations besides select, project, join (theta-join),
union, intersect, minus, and product operations. Both outer join and transitive closure operations
have found many applications in data processing. Oracle10g SQL*PLUS supports the syntax of outer
joins, cross join, natural join, inner join, linear transitive closure operation, etc.

SELECT Operation:

The select operation in terms of the relational database model is a unary operation to retrieve records
or tuples in a table based on some select condition. The select operation is used to retrieve one or
more records (tuples) from a database table and can be specified in the where clause of a SQL select
statement.

The following SQL statement is to retrieve the employees who work for department number 5.
After the prompt SQL>, type in the statement as follows:

SQL> select *
 from jps.employee
 where dno = 5;

NAME SSN BDATE SEX SALARY SUPERSSN DNO
---------------- ---------- ---------- --- ------- ---------- ---
John B Smith 123456789 09-JAN-55 M 30000 333445555 5
Franklin T Wong 333445555 08-DEC-45 M 40000 888665555 5
Ramesh K Narayan 666884444 15-SEP-52 M 38000 333445555 5
Joyce A English 453453453 31-JUL-62 F 25000 333445555 5

4 rows selected

The result table from querying employee table with the select condition dno = 5 lists all the
employees' information from department number 5. The symbol ‘=‘ is the comparison operator, and
the comparison expression dno = 5 specifies the select condition for the query.

Comparison Operators:

The following list contains the comparison operators available in ORACLE SQL*PLUS:

= (equal)
!= (not equal)
<> (not equal)
> (greater than)
>= (greater than or equal)

Junping Sun 12 January 2014

< (less than)
<= (less than or equal)

The above list of comparison operators can be used for any comparison expression in a where clause.
The comparison expression can be used to specify either the select condition for the select operation
or the join condition for the join operation in terms of relational database operations. If the
comparison expression contains one item that is a column name in a table and one constant of the
same type as the column name, then the comparison expression specifies a select condition for a
query. If the comparison expression contains the items such as column names on the both sides of
the comparison operator, then the comparison expression defines a join condition. The join
operation will be discussed later.

To retrieve the employees whose salary is greater than $30,000, we could use the following SQL
statement:

SQL> select *
 2 from jps.employee
 3 where salary > 30000;

NAME SSN BDATE SEX SALARY SUPERSSN DNO
------------------ --------- ---------- ---- ------- --------- ---
Franklin T Wong 333445555 08-DEC-45 M 40000 888665555 5
Jennifer S Wallace 987654321 20-JUN-31 F 43000 888665555 4
Ramesh K Narayan 666884444 15-SEP-52 M 38000 333445555 5
James E Borg 888665555 10-NOV-27 M 55000 1

4 rows selected.

In the where clause, the comparison expression, salary > 30000, contains a column name
salary and a constant 30000.

Logical Operators:

There are three logical operators that can be used to connect multiple comparison expressions in a
where clause.

and
or
not

To retrieve the female employees whose salary is more than $30000, the following select
statement can be used:

SQL> select *
 2 from jps.employee
 3 where sex = 'F' and salary > 30000;

NAME SSN BDATE SEX SALARY SUPERSSN DNO
------------------ --------- ---------- ---- ------- --------- ---
Jennifer S Wallace 987654321 20-JUN-31 F 43000 888665555 4

1 rows selected.

Junping Sun 13 January 2014

in the where clause, the comparison expressions such as sex = 'F' and salary > 30000
are connected by the logical operator and.

To retrieve the employees who work on at least one of projects with project number 1, 2, or 3.

The query statement can be formulated with comparison expressions pno = 1, pno = 2, and
pno = 3 connected by operators or in the where clause.

SQL> select *
 2 from jps.workson w
 3 where w.pno = 1 or w.pno = 2 or w.pno = 3;

ESSN PNO HOURS
--------- ----- ------
123456789 1 32.5
123456789 2 7.5
666884444 3 40
453453453 1 20
453453453 2 20
333445555 2 10
333445555 3 10

7 rows selected.

• In the above select statement, the table jps.workson is aliased as w in the from clause.

• In the where clause, the column name (attribute name) pno is prefixed with the aliased table

name w. The purpose of doing that is to avoid ambiguity when the same column name appears in
more than one table in a database. The prefix is used to indicate from which table the attribute
name is referred.

IN Operator:

The select condition in the above query statement can be reformulated by using operator IN.

SQL> select *
 2 from jps.workson w
 3 where w.pno in (1,2,3);

The select condition pno in (1, 2, 3) is equivalent to the following:

w.pno = 1 or w.pno = 2 or w.pno = 3

Try the above select statement to see whether the execution result is the same or not.

By using the IN operator, the join operation can be eliminated in certain situations.

Junping Sun 14 January 2014

For example, to retrieve the names and social security numbers of employees who works on at least
one of projects with project number 1, 2, or 3. There are several ways to formulate the query by
using select statement.
The first select statement used in the following includes a join operation, the result from the
execution of the query is duplicated. The query statement with the join operation will retrieve the
employee’s name and social security number for the employee who works on project 1, 2, or
3.

SQL> select e.name, e.ssn
 2 from jps.employee e, jps.workson w
 3 where w.pno in (1,2,3) and e.ssn = w.essn;

NAME SSN
------------------- ---------
John B Smith 123456789
John B Smith 123456789
Ramesh K Narayan 666884444
Joyce A English 453453453
Joyce A English 453453453
Franklin T Wong 333445555
Franklin T Wong 333445555

7 rows selected.

• the expression e.ssn = w.essn specifies the join condition.

• the expression w.pno in (1, 2, 3) specifies the select condition.

The second select statement as the following uses the operator IN to answer the query without
any duplicates.

SQL> select e.name, e.ssn
 2 from jps.employee e
 3 where e.ssn in (select w.essn
 4 from jps.workson w
 5 where w.pno in (1,2,3));

NAME SSN
------------------- ---------
John B Smith 123456789
Franklin T Wong 333445555
Joyce A English 453453453
Ramesh K Narayan 666884444

4 rows selected.

In the above query statement, there are two subqueries, one is called the inner subquery enclosed
within the left and right parentheses, another one is called the outer subquery.

The inner subquery:

select w.essn
from jps.workson w
where w.pno in (1,2,3)

Junping Sun 15 January 2014

The outer subquery:

select e.name, e.ssn
from jps.employee e
where e.ssn in ... (result from the inner subquery)

The execution result from the inner subquery will be used as the part of select condition in the where
clause of the outer query.

One of the advantages of this select statement with subqueries is to eliminate the join operation and
to reduce the cost of execution. This select statement requires only two unary operations such as the
two select operations instead of join operation and generates small intermediate and final result table
without any duplicates.

NOT IN as the Negation of IN:

The select condition pno in (1, 2, 3) is equivalent to the following:

pno = 1 or pno = 2 or pno =3

whereas the select condition pno not in (1, 2, 3) is equivalent to the following:

pno <> 1 and pno <> 2 and pno <> 3

To retrieve both the social security numbers and names of employees who work on these projects
other than the projects with project number 1, 2, or 3, you could use the expression not in
(1,2,3) in the where clause.

SQL> select e.name, e.ssn
 2 from jps.employee e
 3 where e.ssn in (select w.essn
 4 from jps.workson w
 5 where w.pno not in (1,2,3));

NAME SSN
------------------- ---------
Franklin T Wong 333445555
James E Borg 888665555
Jennifer S Wallace 987654321
Ahmad V Jabbar 987987987
Alicia J Zelaya 999887777

5 rows selected.

To retrieve both the social security numbers and names of employees who do not work on any one
of the projects with project number 1, 2, and 3. The list of employees who work on one of the
project 1, 2, or 3 should be excluded from the whole list of employees.

SQL> select e.name, e.ssn
 2 from jps.employee e
 3 where e.ssn not in (select w.essn

Junping Sun 16 January 2014

 4 from jps.workson w
 5 where w.pno in (1,2,3));

NAME SSN
------------------- ---------
Alicia J Zelaya 999887777
Jennifer S Wallace 987654321
Ahmad V Jabbar 987987987
James E Borg 888665555

4 rows selected.

The above query only lists those who are not in the list of employees who work on at least one of
projects with project number 1, 2, or 3.

EXISTS v.s. NOT EXISTS:

These two above queries can be implemented with the functions such as EXISTS and NOT
EXISTS.

To retrieve both the names and the social security numbers of employees who work on at least one
of projects with the project number 1, 2, or 3.

SQL> select e.name, e.ssn
 2 from jps.employee e
 3 where exists (select *
 4 from jps.workson w
 5 where w.pno in (1,2,3)
 6 and e.ssn = w.essn);

NAME SSN
------------------- ---------
John B Smith 123456789
Franklin T Wong 333445555
Ramesh K Narayan 666884444
Joyce A English 453453453

4 rows selected.

To retrieve both the names and social security numbers of employees who do not work on
any one of projects with the project number 1, 2, and 3.

SQL> select e.name, e.ssn
 2 from jps.employee e
 3 where not exists (select *
 4 from jps.workson w
 5 where w.pno in (1,2,3)
 6 and e.ssn = w.essn);

Junping Sun 17 January 2014

NAME SSN
------------------- ---------
Alicia J Zelaya 999887777
Jennifer S Wallace 987654321
Ahmad V Jabbar 987987987
James E Borg 888665555

4 rows selected.

These two query statements also involve the join operation, but they do perform the select operation
first before the join operation. That is the reason why the result table does not contain the duplicates.

The expression w.pno in (1,2,3) in the where clause of the inner query is the select
condition, and the expression e.ssn = w.essn is the join condition that correlates records
from both the workson table in the inner subquery and the employee table in the outer subquery by
the join condition.

DISTINCT to Remove the Duplicates:

In some situation, the duplicates are inevitable and it is necessary to remove these duplicates. In order
to remove duplicates in a query, the keyword DISTINCT can be used in the front of the column
name in the select clause as the final filtering operation before the final result is displayed.
For example, there is a query to list the social security numbers of supervisors in the employee
table. It is unnecessary to list the duplicates of the social security numbers in the result table.

 SQL> select distinct (e.superssn)
 2 from jps.employee e;

SUPERSSN

333445555
888665555
987654321

3 rows selected.

• If the keyword distinct is not used, then the result table will contain the duplicates. Removing

duplicates in a relation table will incur extra cost.

LIKE Operator:

The LIKE operator can be used for pattern-matching in the select condition of a select statement.

For example, to retrieve the employees whose last name is Wong, the following select condition
can be used to do pattern-matching in the query.

SQL> select *
 2 from jps.employee e
 3 where e.name like '%Wong';

Junping Sun 18 January 2014

NAME SSN BDATE SEX SALARY SUPERSSN DNO
------------------ --------- ---------- ---- ------- --------- ---
Franklin T Wong 333445555 08-DEC-45 M 40000 888665555 5

1 rows selected.

The character “%” is called a wild card, which matches any string of zero or more characters.

Similarly, you could use the wild card character “%” to retrieve the employees whose names contain
the capital letter “W” as the following:

SQL> select *
 2 from jps.employee e
 3 where e.name like '%W%';

NAME SSN BDATE SEX SALARY SUPERSSN DNO
------------------ --------- ---------- ---- ------- --------- ---
Franklin T Wong 333445555 08-DEC-45 M 40000 888665555 5
Jennifer S Wallace 987654321 20-JUN-31 F 43000 888665555 4

2 rows selected.

The first wild card character ‘%’ matches in the where clause any string of zero or more characters
before the capital letter ‘W’, and the second wild card character ‘%’ matches any string of zero or
more characters after the capital letter ‘W’.

PROJECT Operation:

The project operation in the relational database model is to retrieve some of column data in a table
but not necessary all of the columns.

To retrieve the name, social security number, and salary of employees from department
number 5. After the prompt SQL>, type in the statement as follows:

SQL> select name, ssn, salary
 from jps.employee
 where dno = 5;

NAME SSN SALARY
---------------- ---------- -------
John B Smith 123456789 30000
Franklin T Wong 333445555 40000
Ramesh K Narayan 666884444 38000
Joyce A English 453453453 25000

4 rows selected.

The result table from the query contains the data from the columns such as NAME, SSN, and
SALARY for those employees in department number 5.

Junping Sun 19 January 2014

JOIN Operation:

The join operation in the relational database model is used to combine the related data from two or
more relational tables. For example, in order to retrieve the name of the manager for each
department, the query requires combining data from both employee and department tables.
The employee table contains all the employees information such as NAME, SSN (social security
number), SEX, SALARY, DNO (the department for which the employee works). The department
table contains the information for each department such as DNUMBER (the department number),
DNAME (the department name), MGRSSN (the social security number of the department's manager),
and so on. In this database model, the manager's name and his/her other information are kept in the
employee table since the manager of a department is also treated as an employee.

Before answering the query, it is a good idea to look at data in both jps.employee and
jps.department tables.

Type in the following statement after the prompt SQL> to list the data in the jps.department
table.

SQL> select *
 2 from jps.department;

DNAME DNUMBER MGRSSN MGRSTARDA
----------------------------- ----------------------------- ----------------------------- -----------------------------

Research 5 333445555 22-MAY-78
Administration 4 987654321 01-JAN-85
Headquarters 1 888665555 19-JUN-71

3 rows selected.

Type in the following statement after the prompt SQL> to list the data in the jps.employee
table.

SQL> select *
 2 from jps.employee;

NAME SSN BDATE SEX SALARY SUPERSSN DNO
------------------ --------- ---------- ---- ------- --------- ---
John B Smith 123456789 09-JAN-55 M 30000 333445555 5
Franklin T Wong 333445555 08-DEC-45 M 40000 888665555 5
Alicia J Zelaya 999887777 19-JUL-85 F 25000 987654321 4
Jennifer S Wallace 987654321 20-JUN-31 F 43000 888665555 4
Ramesh K Narayan 666884444 15-SEP-52 M 38000 333445555 5
Joyce A English 453453453 31-JUL-62 F 25000 333445555 5
Ahmad V Jabbar 987987987 29-MAR-59 M 25000 987654321 4
James E Borg 888665555 10-NOV-27 M 55000 1

Junping Sun 20 January 2014

8 rows selected.

To retrieve the department number, the department name, and both the name and the social
security number of the department's manager, the following select statement can be used.

SQL> select dnumber, dname, mgrssn, name
 2 from jps.department, jps.employee
 3 where mgrssn = ssn;

DNUMBER DNAME MGRSSN NAME
---------- --------------- ---------------- -------------------
5 Research 333445555 Franklin T Wong
4 Administration 987654321 Jennifer S Wallace
1 Headquarters 888665555 James E Borg

3 rows selected.

In the select statement for this query, the expression mgrssn = ssn specifies the join
condition (equi-join condition) between the jps.department and jps.employee tables.

Please note that the data items such as DNUBMER, DNAME, and MGRSSN are from the
jps.department table, and the data item NAME is from the jps.employee table. In order
to denote the column names explicitly, the aliasing mechanism can be used as in the following select
statement:

SQL> select d.dnumber, d.dname, d.mgrssn, e.name
 2 from jps.department d, jps.employee e
 3 where d.mgrssn = e.ssn;

DNUMBER DNAME MGRSSN NAME

---------------- ----------------------------- ------------------ -----------------------------------
5 Research 333445555 Franklin T Wong
4 Administration 987654321 Jennifer S Wallace
1 Headquarters 888665555 James E Borg

3 rows selected.

In the above select statement, d is the alias of jps.department, and e is the alias of
jps.employee.

By using alias, you could join the table itself for certain applications. For example, the application
query requires retrieving all the employees and their corresponding supervisors (here it is assumed
that each employee has at most one supervisor, but a supervisor may supervises several supervisees)

Before writing the SQL query statement, it is better to print out the jps.employee table again
to determine the join columns (sometime, it is called a join path).

SQL> select * from jps.employee;

Junping Sun 21 January 2014

EMPLOYEE

NAME SSN BDATE SEX SALARY SUPERSSN DNO
------------------ --------- ---------- ---- ------- --------- ---
John B Smith 123456789 09-JAN-55 M 30000 333445555 5
Franklin T Wong 333445555 08-DEC-45 M 40000 888665555 5
Alicia J Zelaya 999887777 19-JUL-85 F 25000 987654321 4
Jennifer S Wallace 987654321 20-JUN-31 F 43000 888665555 4
Ramesh K Narayan 666884444 15-SEP-52 M 38000 333445555 5
Joyce A English 453453453 31-JUL-62 F 25000 333445555 5
Ahmad V Jabbar 987987987 29-MAR-59 M 25000 987654321 4
James E Borg 888665555 10-NOV-27 M 55000 1

8 rows selected.

In the jps.employee table, the column SSN and the column SUPERSSN have the same
domain, and these two columns can be used as join columns (sometimes called the join path). The set
of values in the column SUPERSSN is the subset of the values in the column SSN since not every
employee is a supervisor.

To retrieve the pairs of NAME, SSN for both employees and their supervisors, the following query
can be used:

SQL> select e.ssn, e.name, s.ssn, s.name
 2 from jps.employee e, jps.employee s
 3 where e.superssn = s.ssn;

SSN NAME SSN NAME
------------ ------------------- ------------ -------------------
123456789 John B Smith 333445555 Franklin T Wong
333445555 Franklin T Wong 888665555 James E Borg
999887777 Alicia J Zelaya 987654321 Jennifer S Wallace
987654321 Jennifer S Wallace 888665555 James E Borg
666884444 Ramesh K Narayan 333445555 Franklin T Wong
453453453 Joyce A English 333445555 Franklin T Wong
987987987 Ahmad V Jabbar 987654321 Jennifer S Wallace

7 rows selected

By using alias, it is possible to imagine there are two copies of the jps.employee table, one is the
copy as the employee, and another is the copy as the supervisor.
In the from clause: from jps.employee e, jps.employee s

The jps.employee table is aliased as an employee copy (via the expression jps.employee
e) and a supervisor copy (via the expression jps.employee s).

By specifying the join condition in the where clause where e.superssn = s.ssn, the value of
e.superssn in the employee copy of the jps.employee table is used to match the value of
s.ssn in the supervisor copy of the jps.employee table, which is the social security number
of the corresponding supervisor.

Junping Sun 22 January 2014

OUTER-JOIN Operation:

There is an inherited problem from the join (inner join) operation. If you look at the result table
from the execution of the query statement. In the original EMPLOYEE table, there are 8 employee
records. As a correct query, the system should also display 8 records of employees. The reason why
the system does not display the employee record, James E Borg, is that the person whose name
is James E Borg has no supervisor. There is no value in the entry superssn for the record of
James E Borg. The regular join (sometimes called inner join) operation will not match any
NULL values in the join columns.

In order to display both the social security number and name of both the employee and his/her
supervisor, even though the employee has no supervisor, we could use another type of join called
outer-join to solve this type of problems.

The query can be stated as the following:

To retrieve the social security numbers and the names of each employee and his/her
corresponding supervisor. The corresponding SQL statement for the query is written as follows:

SQL> select e.ssn, e.name, s.ssn, s.name
 2 from jps.employee e, jps.employee s
 3 where e.superssn = s.ssn (+);

SSN NAME SSN NAME
---------- ------------------- ---------- -------------------
123456789 John B Smith 333445555 Franklin T Wong
333445555 Franklin T Wong 888665555 James E Borg
999887777 Alicia J Zelaya 987654321 Jennifer S Wallace
987654321 Jennifer S Wallace 888665555 James E Borg
666884444 Ramesh K Narayan 333445555 Franklin T Wong
453453453 Joyce A English 333445555 Franklin T Wong
987987987 Ahmad V Jabbar 987654321 Jennifer S Wallace
888665555 James E Borg

8 rows selected.

In the where clause of the above query statement as the following:

where e.superssn = s.ssn (+);

it specifies the left-outer-join operation, i.e., the left-outer-join operation will keep all the records in
the table on the left side of the join expression. The left-outer join expression is divided into left-
hand side and right side by the symbol ‘=’. Here, the jps.employee table as the role of employee
is on the left side of the left-outer-join expression, and the jps.employee table as the role of
supervisor is on the right side of the left-outer-join expression. The symbol (+) indicates that all the
records from the employee table specified on the left-hand side will be kept and the NULL value will
be padded if there is no matching record from the table as the role of supervisor on the right-hand
side. In this case, the query will display the record for James E Borg, and the NULL values will
be padded for the corresponding column entries of James E Borg's supervisor.

Junping Sun 23 January 2014

Please note that the left-outer-join is symmetric to right-outer-join. For example, the result of
operation that the employee table as the role of employee left-outer-joins the employee table as the
role of supervisor is equivalent to the result of operation that the employee table as the role of
supervisor right-outer-joins the employee table as the role of the employee.

All the following expressions are equivalent:

where e.superssn = s.ssn (+);

The where clause states that the employee table as the role of employee left-outer-joins the employee
table as the role of supervisor.

where s.ssn (+) = e.superssn;

The where clause states that the employee table as the role of supervisor right-outer-joins the
employee table as the role of employee.

You may want to try the following statement to see whether these two query statements give the
equivalent result.

SQL> select e.ssn, e.name, s.ssn, s.name
 2 from jps.employee e, jps.employee s
 3 where s.ssn (+) = e.superssn;

Look at the following query statement, it states that the employee table as the role of supervisor left-
outer-joins the employee table as the role of the employee.

The semantic meaning of the statement is to find the supervisees for each employee, i.e., to retrieve
the social security number and the name of each employee, and the corresponding social security
number and the name of his/her supervisees if any. (Otherwise, just display the employee’s social
security number and name by himself/herself.)

SQL> select s.ssn as supervisorssn,
 2 s.name as supervisorname,

3 e.ssn as employeessn,
 4 e.name as employeename
 5 from jps.employee e, jps.employee s
 6 where s.ssn = e.superssn (+);

SUPERVISORSSN SUPERVISORNAME EMPLOYEESSN EMPLOYEENAME
------------- ------------------- ------------- -------------------
123456789 John B Smith
333445555 Franklin T Wong 123456789 John B Smith
333445555 Franklin T Wong 666884444 Ramesh K Narayan
333445555 Franklin T Wong 453453453 Joyce A English
453453453 Joyce A English
666884444 Ramesh K Narayan
888665555 James E Borg 333445555 Franklin T Wong
888665555 James E Borg 987654321 Jennifer S Wallace
987654321 Jennifer S Wallace 999887777 Alicia J Zelaya
987654321 Jennifer S Wallace 987987987 Ahmad V Jabbar
987987987 Ahmad V Jabbar

Junping Sun 24 January 2014

999887777 Alicia J Zelaya

12 rows selected.

1. In the select clause of the above query statement such as:

 select s.ssn as supervisorssn,
 s.name as supervisorname,

 e.ssn as employeessn,
 e.name as employeename

 the column name s.ssn will be displayed as SUPERVISORSSN by using the keyword as, the

column name s.name will be displayed as SUPERVISORNAME, the column name e.ssn
will be displayed as EMPLOYEESSN, and the column name e.name will be displayed as
EMPLOYEENAME.

2. In the result table from the execution of the query statement, the first two columns in the table

means the social security number and the name of the employee as the role of a supervisor, the
third and the fourth columns in the table means the social security number and the name of the
employee’s corresponding supervisees if there is one, otherwise NULL values are padded.

3. In the result table from the execution of this query statement, only James E Borg,

Franklin T Wong, and Jennifer S Wallace have a list of supervisees. The other
employees from the original employee table have no supervisees, whose corresponding
supervisee columns are padded with NULL values.

4. James E Borg has both Jennifer S Wallace and Franklin T Wong as

supervisees;

 Jennifer S Wallace has both Ahmad V Jabbar and Alicia J Zelaya as

supervisees;

 Franklin T Wong has three supervisees such as John B Smith, Ramesh K

Narayan, and Joyce A English.

 Please keep in mind that there are the supervising relationships both from James E Borg to

Jennifer S Wallace and from Jennifer S Wallace to Ahmad V Jabbar
and to Alicia J Zelaya, which implies the transitive supervising relationship from
James E Borg to Ahmad V Jabbar and to Alicia J Zelaya.

 There also exist the supervising relationships both from James E Borg to Franklin T

Wong and from Franklin T Wong to John B Smith, to Ramesh K Narayan,
and to Joyce A English, which also implies the transitive supervising relationships from
James E Borg to John B Smith, to Ramesh K Narayan, and to Joyce A
English. The transitive supervising relationships will be encountered again in the later part.

Consider the query as following:

To retrieve the social security numbers of all direct supervisees of James E. Borg.

By giving the following SQL select statement:

Junping Sun 25 January 2014

SQL> select e.ssn
 2 from jps.employee e
 3 where e.superssn in
 4 (select s.ssn
 5 from jps.employee s
 6 where s.name = 'James E Borg');

The result from the query statement:

SSN

333445555
987654321

2 rows selected.

James E. Borg has two direct supervisees whose social security numbers are 333445555
(Franklin T Wong) and 987654321 (Jennifer S Wallace). In the above select query
statement, the alias e means the employee role and the alias s means supervisor role.

In the above SQL select query statement, if the name 'James E Borg' is replaced by 'Franklin
T Wong' in the where clause of the select statement, you will be able to retrieve the supervisees of
Franklin T Wong.

SQL> select e.ssn
 2 from jps.employee e
 3 where e.superssn in
 4 (select ssn
 5 from jps.employee
 6 where name = 'Franklin T Wong');

SSN

123456789
666884444
453453453

3 rows selected.

Franklin T Wong has three supervisees whose social security numbers are 123456789 (John B
Smith), 666884444 (Ramesh K Narayan), and 453453453 (Joyce A English).

As the same, if you replace the name 'Franklin T Wong' with 'Jennifer S Wallace’ in
the where clause, you could retrieve the direct supervisees of Jennifer S Wallace.

SQL> select e.ssn
 2 from jps.employee e
 3 where superssn in
 4 (select ssn
 5 from jps.employee s
 6 where s.name = 'Jennifer S Wallace');

Junping Sun 26 January 2014

SSN

999887777
987987987

2 rows selected.

Jennifer S Wallace has two direct supervisees whose social security numbers are
999887777 (Alicia J Zelaya) and 987987987 (Ahmad V Jabbar).

From all of three above queries, you will be able to find out

• James E. Borg has two direct supervisees whose social security numbers are 333445555

(Franklin T Wong) and 987654321 (Jennifer S Wallace).

• James E. Borg has five indirect supervisees,
 three of them are the direct supervisees of Franklin T Wong and two of them are the direct

supervisees of Jennifer S Wallace.

• In the employee table, there are only three levels in the supervision hierarchy.

 The first level of supervision is the supervisor, James E Borg who has no supervisor.

 The second level includes the supervisors such as Franklin T Wong and Jennifer S Wallace, who

are the direct supervisees of James E Borg.

 The third level includes both the direct supervisees of Franklin T Won, such as 123456789

(John B Smith), 666884444 (Ramesh K Narayan), and 453453453 (Joyce A
English) and the direct supervisees of Jennifer S Wallace such as 999887777
(Alicia J Zelaya) and 987987987 (Ahmad V Jabbar).

 All of supervisees from the third level have no supervisees.

UNION Operation:

In order to retrieve all of direct and indirect supervisees of James E Borg in the employee table, the
UNION operator can be used for this purpose as the followings:

SQL> select e1.ssn
 2 from jps.employee e1
 3 where e1.superssn in
 4 (select s1.ssn
 5 from jps.employee s1
 6 where s1.name = 'James E Borg')

Junping Sun 27 January 2014

 7 union
 8 select e2.ssn
 9 from jps.employee e2
 10 where e2.superssn in
 11 (select s2.ssn
 12 from jps.employee s2
 13 where s2.name = 'Franklin T Wong')
 14 union
 15 select e3.ssn
 16 from jps.employee e3
 17 where e3.superssn in
 18 (select s3.ssn
 19 from jps.employee s3
 20 where s3.name = 'Jennifer S Wallace');

SSN

123456789
333445555
453453453
666884444
987654321
987987987
999887777

7 rows selected.

There are three subqueries connected by two UNION operators in the above select statement:

• The first subquery from line 1 to 6 retrieves all the direct supervisees of James E Borg.

 The second subquery from line 8 to 13 retrieves the direct supervisees of Franklin T Wong who

is the direct supervisee of James E Borg.

 The third retrieves the direct supervisees of Jennifer S Wallace who is the direct supervisees of

James E Borg.

• The unions of three subqueries give all of direct and indirect supervisees of James E Borg.

 From the first level of supervision relationship to the second level of the supervision relationship,

there are exactly two branches in this supervision hierarchy of the employee data:
 One is from James E Borg to Franklin T Wong, and another is from James E Borg to Jennifer S

Wallace.

 Two union operators have been used to retrieve all of supervisees (both direct and indirect) of

James Borg. N union operators will be required if there are N branches in the supervision
hierarchy.

In order to solve this type of problems, the following select query statement can be used to retrieve
the supervisees of James E Borg at both the second level and the third level of the supervision
relationships no matter how many branches exist.

Junping Sun 28 January 2014

SQL> select e.ssn
 2 from jps.employee e
 3 where e.superssn in
 4 (select s.ssn
 5 from jps.employee s
 6 where s.name = 'James E Borg')
 7 union
 8 select e1.ssn
 9 from jps.employee e1
 10 where e1.superssn in
 11 (select s1.ssn
 12 from jps.employee s1
 13 where s1.superssn in
 14 (select s2.ssn
 15 from jps.employee s2
 16 where s2.name = 'James E Borg'));

SSN

123456789
333445555
453453453
666884444
987654321
987987987
999887777

7 rows selected.

The subquery from line 1 to line 6 retrieves all direct supervisees of James E Borg at the second level
of the supervision relationship.

SQL> select e.ssn
 2 from jps.employee e
 3 where e.superssn in
 4 (select s.ssn
 5 from jps.employee s
 6 where s.name = 'James E Borg');

The subquery gives the result as the following table:

SSN

333445555
987654321

2 rows selected.

The subquery from line 8 to 16 retrieves all the indirect supervisees of James E. Borg at the third
level of the supervision relationship.

 8 select e1.ssn

Junping Sun 29 January 2014

 9 from jps.employee e1
 10 where e1.superssn in
 11 (select s1.ssn
 12 from jps.employee s1
 13 where s1.superssn in
 14 (select s2.ssn
 15 from jps.employee s2
 16 where s2.name = 'James E Borg'));

The result table from this subquery includes the supervisees of both Franklin T Wong and
Jennifer S Wallace.

SSN

123456789
453453453
666884444
987987987
999887777

5 rows selected.

Retrieving all the indirect supervisees of James E Borg at the third level of the suerpvision
relationship can be done in a nested subquery which includes three subqueries. This is corresponding
to the number of levels in the supervision hierarchy.

By using the above subquery, it is possible to reduce the number of UNION operations with respect
to the number of branches at each level of the supervision relationship. But there are still some
problems if the number of levels in the supervision relationship is unknown. In the employee table of
the above example, there are only two levels in the supervision hierarchy. The only one UNION
operator is used to combine the supervisees at both the second level and the third level of the
supervision relationship. In general, N-1 UNION operators will be required if there are N levels in the
supervision hierarchy.

It is not computationally feasible for the following reasons.

• The first, it is assumed that the number of levels in a supervision hierarchy is unknown in most

dynamic database.
• The second, it is hard to write the SQL select query statement in advance if the number of levels

is unknown, i.e., the number of UNION operators can not be determined in advance.

• The third, the number of levels in the largest nested subquery can not be determined in advance.

In order to solve this type of problems, SQL*PLUS of ORACLE 7 or later provide the start
with ... connect clause to resolve this type of problems in the need of applications. The
application of retrieving both direct and indirect supervisees of a supervisor at all levels of the
supervision relationship is typically called transitive closure.

START WITH ... CONNECT BY Operator

Junping Sun 30 January 2014

To retrieve all the supervisees of James E Borg at all the levels of the supervision
relationship, the following select statement with the start with ... connect by clause can
be used.

select lpad(' ', (level - 1) * 2) || ssn as padded_ssn
from jps.employee
connect by prior ssn = superssn
start with ssn in (select ssn
 from jps.employee
 where name = 'James E Borg');

SSN

888665555
 333445555
 123456789
 666884444
 453453453
 987654321
 999887777
 987987987

8 rows selected.

Please note that the result table also includes the social security number of James E Borg itself. The
advantages of the select statement with the start with ... connect by clause are not only
that the queries of transitive closure can be answered without predicting the number of levels in the
hierarchy in advance, but also that the query of transitive closure can be answered at any starting
level.

For example, to retrieve all the supervisees of Franklin T Wong by using the following select query
statement:

SQL> select e.ssn
 2 from jps.employee e
 3 start with e.name = 'Franklin T Wong'
 4 connect by e.superssn = prior e.ssn;

SSN

333445555
123456789
666884444
453453453

4 rows selected.

The result table includes also the social security numbers of both Franklin T Wong’s supervisees and
himself.
To apply the start with ... connect by clause for Jennifer S Wallace with the following
the select statement:

Junping Sun 31 January 2014

SQL> select e.ssn
 2 from jps.employee e
 3 start with e.name = 'Jennifer S Wallace'
 4 connect by e.superssn = prior e.ssn;

SSN

987654321
999887777
987987987

3 rows selected.

The following query statement retrieves not only the supervisor’s social security numbers appeared in
the leftmost column of result table, but also the supervisees’ social security numbers at different level
the hierarchy.

SQL> select lpad(' ', (level - 1) * 2) || ssn as padded_ssn
2 from jps.employee e
3 connect by prior ssn = superssn
4 start with ssn in (select ssn
5 from jps.employee
6 where name = 'James E Borg')

SSN

888665555
 333445555
 123456789
 666884444
 453453453
 987654321
 999887777
 987987987

8 rows selected.

• At the first level, the person with the social security number 888665555 (James E Borg)

has no supervisor but two supervisees whose social security number are 33344555
(Franklin T Wong) and 987654321 (Jennifer S Wallace) at the second level.

• The person with the social security number 333445555 (Franklin T Wong) at the second

level has three supervisees whose social security numbers are 123456789 (John B Smith),
666884444 (Ramesh K Narayan), and 453453453 (Joyce A English) from the
third level, and the person with the social security number 987654321 (Jennifer S
Wallace) at the second level has two supervisees whose social security numbers are
999887777 (Alicia J Zelaya) and 987987987 (Ahmad V Jabbar) from the third
level.

• For the detailed information about the expression, LPAD(' ', 9*(Level - 1)) ||

ssn ssn, please make reference to ORACLE: The Complete Reference, 3rd Edition, by
George Koch and Kevin Loney.

Junping Sun 32 January 2014

INTERSECT

The INTERSECT operation retrieves some records with certain common properties. For example,
to retrieve the social security numbers of employees who have dependents. The query can be
answered by the following query statement with the INTERSECT operator.

SQL> select e.ssn
 2 from jps.employee e
 3 intersect
 4 select d.essn
 5 from jps.dependent d;

SSN

123456789
333445555
987654321

3 rows selected.

MINUS

To find the social security numbers of employees who have no dependents. You could use the
set operator MINUS to exclude those employees who have dependents from the employee table. The
result table from the following query statement will only include the social security numbers of these
employees who are in the employee table, but not in the dependent table.

SQL> select e.ssn
 2 from jps.employee e
 3 minus
 4 select d.essn
 5 from jps.dependent d;

SSN

453453453
666884444
888665555
987987987
999887777

5 rows selected.

DIVISION

The division operation is commonly used to check the set containment type query such as to find the
employee who works on all the projects controlled by department #5. An employee could work a set
of projects, and the department #5 could control or manage a list of projects. The division operation
will be used to test whether the set of projects that the employee works on includes all projects in the
set of projects controlled by department #5. Here, the word ‘all’ implies every project, but not some

Junping Sun 33 January 2014

of the projects controlled by department #5. The set of projects worked by the employee can be a
superset of the set of projects controlled by department #5. In general, the query can be stated as
“retrieve the employee (social security number and name) who works on all the project
controlled by the department 5.”

select ssn,name
from jps.employee e
where not exists ((select pnumber
 from jps.project
 where dnum = 5)
 minus
 (select pno
 from jps.workson w
 where e.ssn = w.essn));

no row selected

Department 5 controls projects with the project number 1, 2, and 3. The set of projects controlled by
department 5 is returned by the following query:

select pnumber
from jps.project
where dnum = 5;

PNUMBER

1
2
3

The workson table shows that there is no employee who works on all the projects controlled by
department. With respect to the data sets in the project table, workson table, and employee table,
the result from the division query is empty. Actually, the SQL statement can be phrased as “there
does not exist a project controlled by department 5 that the employee does not work on.” The
SQL statement actually uses the double negation to implement the query: retrieve the employee
who works on all the projects controlled by Department #5.
The syntax structure of the SQL statement shows the query logic as follows:

The first inner subquery

select pnumber
from jps.project
where dnum = 5;

returns the set of projects controlled by Department 5 as follows:

PNUMBER

1
2
3

Junping Sun 34 January 2014

The second inner (correlated) subquery

select pno
from jps.workson w
where e.ssn = w.essn)

retrieves a set of projects each employee works on at a time. The join condition e.ssn =
w.essn correlates an employee tuple from table jps.employee in the outer subquery one at
a time for the testing purpose.
If the employee tuple under current evaluation works on all the projects controlled by Department 5
or the set of projects on which the employee works includes all the projects controlled by
Department 5. The result from the first inner subquery MINUS the result from the second inner
subquery will be empty based on the definition of set-oriented difference operation, then the function
NOT EXISTS will be evaluated to be true, the employee under current evaluation will be displayed as
the part of query result. If neither the employee work on all the projects controlled by Department 5,
nor the set of projects on which the employee works includes the set of projects controlled by
Department, then the function NOT EXISTS will be evaluated to be false because the result of
MINUS operation between the first inner subquery and the second inner subquery will not be empty.
So the employee tuple under current evaluation will fail the test, and the employee will not be
displayed as part of the query result.

To retrieve the employee who works on all the projects that John Smith works on, the query
can be formulated as follows:

select ssn,name
from jps.employee e
where not exists ((select pno
 from jps.workson w1, jps.employee e1
 where e1.name = 'John B Smith'
 and e1.ssn = w1.essn)
 minus
 (select pno
 from jps.workson w

 where e.ssn = w.essn));

SSN NAME
--------- -------------------
123456789 John B Smith
453453453 Joyce A English

Many practical applications require the division operation written in SQL, for example, to find the
students who have completed all the prerequisites; list the students who passed all the exams required
by their respective study plan; etc.

For the following query statement, can you describe what the SQL statement will retrieve and stand
for?

select ssn,name
from jps.employee e

Junping Sun 35 January 2014

where not exists ((select pno
 from jps.workson w
 where e.ssn = w.essn)
 minus
 (select pnumber
 from jps.project
 where dnum = 5))

SSN NAME
--------- -------------------
123456789 John B Smith
666884444 Ramesh K Narayan
453453453 Joyce A English

New ANSI Syntax for Joins and Outer-Joins Supported by Oracle 9i and Later Version:

The new ANSI Standard syntax allows specifying join operations such as: CROSS JOIN (actually it is
the CARTESIAN PRODUCT operation), JOIN (THETA JOIN), NATURAL JOIN, LEFT
OUTER JOIN, RIGHT OUTER JOIN, FULL OUTER JOIN, etc. in the from clause of a
select statement.

Assuming two following given tables R and S:

SQL> select *
 2 from jps.R;

A B C
-- -- --
a1 b1 c1
a1 b2 c2

SQL> select *

Junping Sun 36 January 2014

 2 from jps.S;

B C D
-- -- --
b1 c1 d1
b1 c3 d2

We will illustrate these SQL statements with the new syntax supported by Oracle10g in the following:

CROSS JOIN: (CARTESIAN PRODUCT)

SQL> select *
 2 from jps.R cross join jps.S;

A B C B C D
-- -- -- -- -- --
a1 b1 c1 b1 c1 d1
a1 b2 c2 b1 c1 d1
a1 b1 c1 b1 c3 d2
a1 b2 c2 b1 c3 d2

JOIN: (THETA JOIN on R.B = S.B)

SQL> select *
 2 from jps.R join jps.S on jps.R.B = jps.S.B;

A B C B C D
-- -- -- -- -- --
a1 b1 c1 b1 c1 d1
a1 b1 c1 b1 c3 d2

JOIN: (THETA JOIN on R.C = S.C)

SQL> select *
 2 from jps.R join jps.S on jps.R.C = jps.S.C;

A B C B C D
-- -- -- -- -- --
a1 b1 c1 b1 c1 d1

INNER JOIN: (Same as THETA JOIN)

SQL> select *
 2 from jps.R inner join jps.S on jps.R.C = jps.S.C;

A B C B C D
-- -- -- -- -- --
a1 b1 c1 b1 c1 d1

Junping Sun 37 January 2014

NATURAL JOIN:

SQL> select *
 2 from jps.R natural join jps.S;

B C A D
-- -- -- --
b1 c1 a1 d1

or use the following select statement to explicitly order the attribute list in display:

SQL> select A, B, C, D
 2 from jps.R natural join jps.S;

A B C D
-- -- -- --
a1 b1 c1 d1

LEFT OUTER JOIN on R.B = S.B: (Based on THETA JOIN definition)

SQL> select *
 2 from jps.R left outer join jps.S on jps.R.B = jps.S.B;

A B C B C D
-- -- -- -- -- --
a1 b1 c1 b1 c1 d1
a1 b1 c1 b1 c3 d2
a1 b2 c2

LEFT OUTER JOIN on R.C = S.C: (Based on THETA JOIN definition)

SQL> select *
 2 from jps.R left outer join jps.S on jps.R.C = jps.S.C;

A B C B C D
-- -- -- -- -- --
a1 b1 c1 b1 c1 d1
a1 b2 c2

RIGTHT OUTER JOIN on R.B = S.B: (Based on THETA JOIN definition)

SQL> select *
 2 from jps.R right outer join jps.S on jps.R.B = jps.S.B;

A B C B C D
-- -- -- -- -- --

Junping Sun 38 January 2014

a1 b1 c1 b1 c3 d2
a1 b1 c1 b1 c1 d1

RIGTHT OUTER JOIN on R.C = S.C: (Based on THETA JOIN definition)

SQL> select *
 2 from jps.R right outer join jps.S on jps.R.C = jps.S.C;

A B C B C D
-- -- -- -- -- --
a1 b1 c1 b1 c1 d1
 b1 c3 d2

FULL OUTER JOIN ON R.B = S.B: (Based on THETA JOIN definition)

SQL> select *
 2 from jps.R full outer join jps.S on jps.R.B = jps.S.B;

A B C B C D
-- -- -- -- -- --
a1 b1 c1 b1 c1 d1
a1 b1 c1 b1 c3 d2
a1 b2 c2

FULL OUTER JOIN ON R.C = S.C: (Based on THETA JOIN definition)

SQL> select *
 2 from jps.R full outer join jps.S on jps.R.C = jps.S.C;

A B C B C D
-- -- -- -- -- --
a1 b1 c1 b1 c1 d1
a1 b2 c2
 b1 c3 d2

FULL OUTER JOIN ON R.B = S.B and R.C = S.C:

SQL> select *
 2 from jps.R full outer join jps.S
 3 on jps.R.B = jps.S.B and jps.R.C = jps.S.C;

A B C B C D
-- -- -- -- -- --
a1 b1 c1 b1 c1 d1
a1 b2 c2
 b1 c3 d2

Aggregate Functions:

AVG, COUNT, MAX, MIN, and SUM

The above list of aggregate functions such as AVG, COUNT, MAX, MIN, and SUM provide group
values for various purposes.

Junping Sun 39 January 2014

1. The functions such as AVG, MAX, MIN, and SUM calculate the average, maximum, minimum, and

summation of value(s) in a column respectively. The function COUNT can be used to count the
number of entries in a column.

2. The functions such as AVG and SUM can be only applied to the columns of numerical data type,

whereas the functions such as MAX, MIN, and COUNT can be applied to the column of either
numerical data type or character data type.

3. The functions such as AVG and SUM will discard any NULL values in a column before the

calculation, whereas the functions such as MAX, MIN, and COUNT do take the consideration of
the NULL values in a column.

To calculate the average, maximum, minimum, and total salary from the EMPLOYEE table, the
following select statement can be used:

SQL> select avg(salary),min(salary),max(salary),sum(salary)
 2 from jps.employee;

AVG(SALARY) MIN(SALARY) MAX(SALARY) SUM(SALARY)
----------- ----------- ----------- -----------

35125 25000 55000 281000

1 rows selected.

To calculate the total number of employees, the average salary, and the total salary of the
department 5 in the EMPLOYEE table, the corresponding select query statement is as the
following:

SQL> select count(ssn), avg(salary), sum(salary)
 2 from jps.employee
 3 where dno = 5;

COUNT(SSN) AVG(SALARY) SUM(SALARY)
---------- ----------- -----------

4 33250 133000

1 rows selected.

Group By:

In order to retrieve the total number of employees, the average salary, and the total salary for each
individual department, the group by clause can be used to serve this purpose.

SQL> select dno, count(ssn), avg(salary), sum(salary)
 2 from jps.employee
 3 group by dno;

DNO COUNT(SSN) AVG(SALARY) SUM(SALARY)
------ ---------- ----------- -----------
1 1 55000 55000

Junping Sun 40 January 2014

4 3 31000 93000
5 4 33250 133000

Having:

The select condition or constraint in the where clause is applied to each individual record or tuple,
whereas the constraint specified in the having clause is applied to the each individual group obtained
from group by clause.

For example, to retrieve the number of employees, the average salary, and the total salary of each
department, only these departments have more than one employee. The following is the select query
statement with the specification of the constraints applied to each individual group:

SQL> select dno, count(ssn), avg(salary), sum(salary)
 2 from jps.employee
 3 group by dno
 4 having count(ssn) > 1;

DNO COUNT(SSN) AVG(SALARY) SUM(SALARY)
-------- ---------- ----------- -----------
4 3 31000 93000
5 4 33250 133000

Table Creation:

Up to now, you have experienced how to use the select statement to retrieve the data from the
database. In the next, we present how to create a table and load data into the table.

To create the employee table, you could use the following create table statement:

create table EMPLOYEE
(name varchar2(19) not null,
 ssn char (9),
 bdate date,
 sex char(3),
 salary number(8,2),
 superssn char(9),
 dno varchar(8),
 constraint empPK primary key (ssn));

There are several ways to load data into an existing table:

1. Use the insert statement to insert a single record at a time.
2. Use the insert statement to insert a list of records from either an existing table or a query.
3. Use the SQL*LOADER to load a list of records in a data file under your current directory into a

database table.
4. Use a program with the embedded SQL statement to read a list of records in a data file into a

database table.

Junping Sun 41 January 2014

In this tutorial, we will show how to use the insert statement to load the data into a database table.

To insert a single data record into a database table, the following insert statement can be used:

insert into EMPLOYEE values
('John B Smith','123456789','09-JAN 55','M',30000,'333445555','5');

• In the above insert statement, EMPLOYEE is the name of the table into which the record will be

inserted.

• All the data items in the record are separated by a comma. The data item of character type should

be enclosed with single quotes at both the beginning and the end of the character string. The list
of items that comprise the data record is enclosed within the left and right parentheses.

To insert the rest of records in the EMPLOYEE table, use the following insert statements.

insert into EMPLOYEE values
('Franklin T Wong','333445555','08-DEC-45','M',40000,'888665555','5');

insert into EMPLOYEE values
('Alicia J Zelaya','999887777','19-JUL-85','F',25000,'987654321','4');

insert into EMPLOYEE values
('Jennifer S Wallace','987654321','20-JUN-31','F',43000,'888665555','4');

insert into EMPLOYEE values
('Ramesh K Narayan','666884444','15-SEP-52','M',38000,'333445555','5');

insert into EMPLOYEE values
('Joyce A English','453453453','31-JUL-62','F',25000,'333445555','5');

insert into EMPLOYEE values
('Ahmad V Jabbar','987987987','29-MAR-59','M',25000,'987654321','4');

insert into EMPLOYEE values
('James E Borg','888665555','10-NOV-27','M',55000,' ','1');

To insert a list of records from an existing table, for example, jps.employee, you could use the
following insert statement:

insert into employee
select * from jps.employee;

Before you insert the list of records from the table jps.employee into your table EMPLOYEE,
make your table EMPLOYEE empty by using the delete statement as the following since you just
inserted the list of records by using the insert statement.

delete from employee;

To insert the data records from the table, employee, just use the following statement:

SQL> insert into employee
 2 select * from jps.employee;

Junping Sun 42 January 2014

Now, you could use the select statement to view the data in the EMPLOYEE table created by
yourself.

SQL> select * from employee;

The Delete Statement:

To delete an employee whose name is Franklin T Wong, the delete statement is as the following:

delete from employee
where name = 'Franklin T Wong';

To delete all the records in a table, you could use the statement in the following format:

delete from tablename
The delete statement deletes all the records in the table and makes the table empty.

• To look up constraints in a specific table created by yourself, you could use the following

statement:

 select owner, constraint_name
 from user_constraints
 where owner = 'JPS' and table_name = 'EMPLOYEE';

OWNER CONSTRAINT_NAME
--------- ----------------

JPS SYS_C001252
JPS EMPPK
JPS EMPDNOFRK

• The constraint with the name EMPPK is the primary key constraint in the employee table.

• The constraint with the name EMPDNOFRK is the foreign key constraint that references the

primary key, dnumber, in the department table.

• The constraint with the system assigned name, SYS_C001252, is the NOT NULL constraint.

If the user who creates the constraint without the constraint name, then the system will
automatically assign a constraint name to it.

• To look up constraints in a specific table granted access to you, you might want to use the

following SQL statement to view the constraints created in the table.

select owner, constraint_name
 from all_constraints
 where owner = 'JPS' and table_name = 'EMPLOYEE';

Junping Sun 43 January 2014

The Drop Table Statement:

In order to remove or destroy a database table, you could use the drop table statement in the
following format:

drop table tablename

To remove the EMPLOYEE table, just simply type

drop table employee;

If there are any foreign keys in other tables referring to the primary keys of the table being dropped,
this simple form of the drop table statement will cause an error, and the table will not be dropped by
ORACLE DBMS server.

If the option cascade constraints is defined, then all the referential integrity constraints
referring to keys in the dropped table are dropped.

To force a table dropped in the cases where other foreign keys refer to its keys, the following version
of the drop table statement can be used:

drop table employee cascade constraints;

Please note that recent Oracle10g allows the recovery of mistakenly dropped tables. So the dropped
tables will be fictitiously put into the so called recycle bin with a new name for your recovery.

If you would like to recover the mistakenly dropped table employee, you could use the following
command:

flashback table employee to before drop;

If you would like to clean the recycle bin, you could use the following command:

purge recyclebin;

If you would like to drop table employee permanently, you could use the following command:

drop table employee purge;
Any comments and suggestions will be appreciated.

Please send your comments to the following address:

Dr. Junping Sun
Graduate School of Computer and Information Sciences
Nova Southeastern University
3301 College Avenue
Fort Lauderdale, FL 33314-7796

Phone: (954) 262-2082
Fax: (954) 262-3915
Internet: jps@nsu.nova.edu

Junping Sun 44 January 2014

Acknowledgments:

I would like to thank many inputs, remarks, suggestions, etc. from my students and colleagues to
improve this documents.

Appendix:

The appendix includes all the DDL (data definition language) statements for creating tables such as
EMPLOYEE, DEPARTMENT, DEPT_LOCATION, PROJECT, WORKSON, and
DEPENDENT, and the DML (data manipulation language) statements to insert each set of data
records into each corresponding table.

DDL Statements to Create Tables:

To create EMPLOYEE table:

create table EMPLOYEE
(

Junping Sun 45 January 2014

 name varchar2(19) not null,
 ssn char (9),
 bdate date,
 sex char(3),
 salary number(8,2),
 superssn char(9),
 dno varchar2(8),
 constraint empPK
 primary key (ssn),
 constraint empsuperFRK
 foreign key (superssn)
 references employee(ssn) disable
);

1. When you first create the EMPLOYEE table, the DEPARTMENT may not exist. The constraint

empdnoFRK that references the primary key in the DEPARTMENT table can not be enabled.
That is the reason why there is a keyword disable, which disables the activation of the
constraint, at the end of the constraint clause.

2. After the loading data into the table, you can enable the constraint empsuperFRK by using the

alter table statement with enable clause as the following:

 alter table EMPLOYEE enable constraint empsuperFRK;

3. By using alter table add constraint statement, you could add the referential constraint that make

reference to the department table after the Department is created.

 alter table employee add
 (constraint empdnoFRK
 foreign key (dno) references department(dnumber));

 This also can be done after the data being loaded into both the employee and department table.

To create DEPARTMENT table:

create table DEPARTMENT
(
 dname varchar2(15) not null,
 dnumber varchar2(8),
 mgrssn char(9),
 mgrstardate date,
 constraint departPK
 primary key (dnumber),
 constraint departUK
 unique (dname),
 constraint departFRK
 foreign key (mgrssn)

Junping Sun 46 January 2014

 references employee (ssn) on delete cascade disable
);

To create DEPTLOCATION table:

create table DEPTLOCATION
(
 dnumber varchar2(8),
 dlocation varchar2(15),
 constraint dlocPK
 primary key (dnumber, dlocation),
 constraint dlocnoFRK
 foreign key (dnumber)
 references department (dnumber) on delete cascade disable
);

To create PROJECT table:

create table project
(
 pname varchar2(15) not null,
 pnumber varchar2(8),
 plocation varchar2(15),
 dnum varchar(8),
 constraint projUK
 unique (pname),
 constraint projPK
 primary key (pnumber),
 constraint projFRK
 foreign key (dnum)
 references DEPARTMENT(dnumber)
);

To create WORKSON table:

create table WORKSON
(
 essn char(9),
 pno varchar2(8),
 hours number(5,1),
 constraint workPK
 primary key (essn, pno),
 constraint workssnFRK
 foreign key (essn)
 references EMPLOYEE(ssn) on delete cascade disable,
 constraint workpnoFRK
 foreign key (pno)

Junping Sun 47 January 2014

 references PROJECT(pnumber) on delete cascade disable
);

To create DEPENDENT table:

create table DEPENDENT
(
 essn char(9),
 dependentname varchar2(15),
 sex char(3),
 bdate date,
 relationship varchar2(12),
 constraint depenPK
 primary key (essn, dependentname),
 constraint depenFRK
 foreign key (essn)
 references EMPLOYEE (ssn) on delete cascade disable
);

It is a good idea to disable the constraint at the time when you create the table and to enable the
constraint after loading the data into each of the table.

DML Statements to Insert Data into Tables:

Insert the Data into the DEPARTMENT Table:

insert into DEPARTMENT values
('Research','5','333445555','22-MAY-78');

insert into DEPARTMENT values
('Administration','4','987654321','01-JAN-85');

insert into DEPARTMENT values
('Headquarters','1','888665555','19-JUN-71');

Junping Sun 48 January 2014

Insert the Data into the EMPLOYEE Table:

insert into EMPLOYEE values
('John B Smith','123456789','09-JAN-55','M',30000,'333445555','5');

insert into EMPLOYEE values
('Franklin T Wong','333445555','08-DEC-45','M',40000,'888665555','5');

insert into EMPLOYEE values
('Alicia J Zelaya','999887777','19-JUL-85','F',25000,'987654321','4');

insert into EMPLOYEE values
('Jennifer S Wallace','987654321','20-JUN-31','F',43000,'888665555','4');

insert into EMPLOYEE values
('Ramesh K Narayan','666884444','15-SEP-52','M',38000,'333445555','5');

insert into EMPLOYEE values
('Joyce A English','453453453','31-JUL-62','F',25000,'333445555','5');

insert into EMPLOYEE values
('Ahmad V Jabbar','987987987','29-MAR-59','M',25000,'987654321','4');

insert into EMPLOYEE values
('James E Borg','888665555','10-NOV-27','M',55000,' ','1');

Insert the Data into the DEPTLOACITON Table:

insert into deptlocation values ('1','Houston');

insert into deptlocation values ('4','Stafford');

insert into deptlocation values ('5','Bellaire');

insert into deptlocation values ('5','Sugarland');

insert into deptlocation values ('5','Houston');

Insert the Data into the PROJECT Table:

insert into project values ('ProductX','1','Bellaire','5');

insert into project values ('ProductY','2','Sugarland','5');

insert into project values ('ProductZ','3','Houston','5');

insert into project values ('Computerization','10','Stafford','4');

insert into project values ('Reorganization','20','Houston','1');

insert into project values ('Newbenefits','30','Stafford','4');

Junping Sun 49 January 2014

Insert the Data into the DEPENDENT Table:

insert into dependent values
('333445555','Alice','F','05-APR-76','Daughter');

insert into dependent values
('333445555','Theodore','M','25-OCT-73','Son');

insert into dependent values
('333445555','Joy','F','03-MAY-48','Spouse');

insert into dependent values
('987654321','Abner','M','29-FEB-32','Spouse');

insert into dependent values
('123456789','Michael','M','01-JAN-78','Son');

insert into dependent values
('123456789','Alice','F','31-DEC-78','Daughter');

insert into dependent values
('123456789','Elizabeth','F','05-MAY-57','Spouse');

Insert the Data into the WORKSON Table:

insert into workson values ('123456789','1',32.5);

insert into workson values ('123456789','2',7.5);

insert into workson values ('666884444','3',40.0);

insert into workson values ('453453453','1',20.0);

insert into workson values ('453453453','2',20.0);

insert into workson values ('333445555','2',10.0);

insert into workson values ('333445555','3',10.0);

insert into workson values ('333445555','10',10.0);

insert into workson values ('333445555','20',10.0);

insert into workson values ('999887777','30',30.0);

insert into workson values ('999887777','10',10.0);

insert into workson values ('987987987','10',35.0);

insert into workson values ('987987987','30',5.0);

insert into workson values ('987654321','30',20.0);

insert into workson values ('987654321','20',15.0);

insert into workson values ('888665555','20',NULL);

Junping Sun 50 January 2014

