MIS

Armstrong & Hardgrave/Transition to Object-Oriented Development

arter ly

UNDERSTANDING MINDSHIFT LEARNING: THE TRANSITION
To OBJECT-ORIENTED DEVELOPMENT'

By: Deborah J. Armstrong
Department of Management Information Systems
College of Business
Florida State University
Tallahassee, FL 32306-1110
U.S.A.
djarmstrong@fsu.edu

Bill C. Hardgrave

Information Systems Department
Sam M. Walton College of Business
University of Arkansas

Fayetteville, AR 72701

U.S.A.

whardgra@uark.edu

Abstract

Information systems professionals increasingly face changes
in their work environment. Some of these changes are incre-
mental, but many require fundamental shifts in mindset
(referred to as a mindshift). Within the domain of software
development, previous research has determined that veteran
developers experience difficulty making the transition to new
forms of development. Although prior research has brought
awareness to the problems caused by a mindshift and has
provided some insight, it has not answered the question of

1

Lars Mathiassen was the accepting senior editor for this paper. Rob
Fichman was the associate editor. Sandeep Purao and Juhani livari served as
reviewers. The third reviewer chose to remain anonymous.

why software developers have difficulty making the transition.
This study begins to answer that question by positing and
examining the mindshift learning theory (MLT). The MLT
suggests that the degree of perceived novelty of the funda-
mental concepts that characterize the new mindset will impact
learning. Specifically, concepts may be perceived as novel
(i.e., not familiar to the learner), changed (i.e., similar to a
known concept, but a different meaning in the new context),
or carryover (i.e., known concept with a similar meaning in
the new context). As an exemplar mindshift learning situa-
tion, this study explores the phenomenon in the context of
software developers transitioning from traditional to object-
oriented (OO0) software development. Findings indicate that
software developers had higher knowledge scores on the OO
concepts they perceived as novel or carryover compared to
those they perceived as changed. Thus, developers experi-
enced detrimental interference from their existing traditional
software development knowledge structure when trying to
learn OO software development. The findings have implica-
tions for organizations and individuals as an understanding
of mindshifts could mean an easier transition through
decreased frustration and a more effective learning process.

Keywords: Software development, IS personnel, personnel
training, learning theory, object-oriented

Introduction I

One can think of a mindset as a distinct viewpoint that
determines how an individual engages events or views reality
(Culbert 1996). When essential or commonly held concepts
fundamentally change, a revolutionary or quantum mindset
change occurs. To describe these revolutionary changes in

MIS Quarterly Vol. 31 No. 3, pp. 453-474/September 2007 453

Armstrong & Hardgrave/Transition to Object-Oriented Development

mindset, we have coined the term mindshifi.> The information
systems field commonly experiences such shifts. Examples
include the shift from flat files to hierarchical to relational
databases; from mainframe-centric computing to client-server
to network-centric computing; and from traditional software
development to object-oriented (OO) development. Each of
these transitions requires not only a shift in tools and tech-
niques, but also most importantly, a shift in the way IS
professionals conceptualize and approach problems and
solutions. Without this mindshift, many of the new mindset’s
advantages are lost because people employ the new tech-
niques with old, incompatible ideas.

Even though the term mindshift is new, the phenomenon has
long been of interest to researchers. Prior studies have
established that learning during a mindshift is difficult (e.g.,
George 2002; Tapscott and Caston 1993), but have not
directly addressed why it is so difficult. This study proffers a
theory to answer why. Specifically, and as an instance of
mindshift learning, this study explores the phenomenon in the
context of software developers making the transition to OO
development. We seek to understand the learning difficulties
software developers encounter during the acquisition of
fundamental OO concept (e.g., object) knowledge.

The proposed mindshift learning theory (MLT) provides
insight into an individual’s learning difficulties when initially
shifting to a new mindset. The empirical portion of this study
focuses on concept knowledge performance and is anecessary
and important first step to ultimately identify why experi-
enced developers find it difficult to learn a new software
development approach. Our findings indicate that the MLT
successfully explains aspects of mindshift learning in the
given context (shift to OO development). Future research will
incorporate additional portions of the theory to further explore
the interplay of learning and knowledge structures.

The study of mindshift learning is significant because these
mindshifts will impact not only individuals but also organi-
zations. For the individual, customized training based on an
understanding of mindshift learning could mean an easier
transition through decreased frustration and a more effective
learning process. For the organization, improving the training
process may decrease organizational training costs, increase
software quality, encourage wider adoption of the new tech-
nology, and, perhaps, ultimately increase employee satisfac-
tion and retention. In a broader sense, the MLT may be
applied to other mindshift learning situations, as the mind-

2Other names for the phenomenon include punctuated change (Gould and
Eldredge 1977) and second order change (Bartunek and Moch 1987; Gash
and Orlikowski 1991).

454 MIS Quarterly Vol. 31 No. 3/September 2007

shifts that individuals face in the IS field will continue—most
likely at an increasing rate (Bettis and Hitt 1995).

Context I

The framework for classifying information systems develop-
ment created by livari, Hirschheim, and Klein (1998, 2000-
2001) establishes the milieu for this study. Divided into four
hierarchical levels, the framework of paradigms, approaches,
methodologies, and techniques provides a structure for under-
standing the IS development process (Iivari et al. 2000-2001).
Atthe hierarchy’s top, the paradigm is “the most fundamental
set of assumptions adopted by a community that allows its
members to share similar perceptions, and engage in com-
monly shared practices” (Hirschheim and Klein 1989, p.
1201). Tivari et al. (2000-2001) assert that four paradigms
exist in IS development: functionalism, social relativism,
neohumanism and radical structuralism. (For a more detailed
discussion of these paradigms, see livari et al. 2000-2001.)
Within the framework, the second level in the hierarchy is the
approach, which is a set of goals, guiding principles, and
fundamental concepts that “drive interpretations and actions
in IS development” (Tivari et al. 2000-2001, p. 186). The
hierarchy’s third level is the methodology, which is a set of
goal-oriented procedures that guide the work and cooperation
of the parties involved in building an IS application (livari et
al. 2000-2001). Atthe lowest level are the technigues, which
“consist of a well-defined sequence of basic operations, which
permits the achievement of specific outcomes if executed
correctly” (Iivari et al. 1998, p. 165).

When applying the IS development framework to the transi-
tion from traditional to OO development, the shift clearly
occurs at the hierarchy’s approach level. Iivari et al. (2000-
2001) state that OO development and other specific forms of
development, such as structured development, are distinct
types of approaches that fall under the functionalist paradigm.
Object-oriented software development is defined as “devel-
oping software that is centered on the concepts of cooperating
objects and classes” (adapted from Booch 1994, pp. 36-37).
Traditional software development is used in this context to
represent any non-object-oriented software development
approach (e.g., procedural, structured). Thus, if we contrast
traditional and OO software development using this frame-
work, it is appropriate to do so at the approach level.

3This definition is consistent with Burrell and Morgan’s (1979) use of the
term paradigm to describe the basic assumptions underlying coexistent
theories of the social sciences, as opposed to Kuhn’s (1970) use of the term
to describe the historical development of the natural sciences, in which one
theory or view of the world is supplanted by a different one.

When transitioning from one software development approach
to another, the learning process may begin with individuals
being introduced to the fundamental concepts that define the
approach. This is consistent with the fundamental concepts
feature of an approach as defined within the IS development
framework. Our objective then is to understand the difficulty
developers experience while learning the fundamental con-
cepts (e.g., encapsulation, object, class) that underlay the new
(OO software development) approach.

The Problem of Learning in
Information Systems I

An investigation of the extant IS literature from a learning
perspective revealed three major research themes:* (1) suc-
cessful software development education focuses on devel-
oping semantic knowledge first, and then syntactic; (2) ex-
perts create abstract mental representations of software devel-
opment constructs, whereas novices create more concrete
representations; and (3) software developers have difficulty
making the transition from the traditional to the OO mindset.

The first theme deals with software development education.
When teaching software development, the sequence of in-
struction impacts learning, within both the traditional and OO
approaches. The common model for teaching software devel-
opment incorporates a mixture of both semantics (language-
independent general programming concepts and structures)
and syntax (language-dependent details for carrying out
actions) in the learning process (Mayer 1987; Shneiderman
1986; Shneiderman and Mayer 1979). General software
development findings support the notion that students who
learn semantics first and then syntax perform better than
students who learn them simultaneously (Bayman and Mayer
1988; Dyck and Mayer 1989; Nowaczyk 1984; Spohrer and
Soloway 1986). Within the OO mindset, it appears even more
important to focus on learning the conceptual design and
modeling aspects prior to introducing coding (Crews and
Butterfield 2003; Hardgrave and Doke 2000; Nelson et al.
2002; Sheetz et al. 1997; Sircar et al. 2001). Thus, when
communicating a new software development approach, initial
training efforts should focus on the mindset’s conceptual
aspects.

The second theme addresses the cognitive representations or
mental models of expert and novice software developers.

*We do not claim to provide an exhaustive review of all of the literature in
this domain; rather, a representation of key articles from each of the relevant
research themes is provided.

Armstrong & Hardgrave/Transition to Object-Oriented Development

Studies of the differences between novice and expert
developers found that expert representations were more
abstract and semantically focused (e.g., what a program does).
Novice representations, on the other hand, were more con-
crete and syntactically focused (e.g., how a program
functions) (Adelson 1981, 1984; Corritore and Wiedenbeck
1991; Guerin and Matthews 1990; McKeithen et al. 1981;
Schenk et al. 1998; Shneiderman 1976; Soloway and Ehrlich
1984; Vitalari 1985; Wiedenbeck 1985, 1986).

The last theme deals directly with the transition from tradi-
tional to OO software development. Prior research indicates
that software developers experienced in traditional develop-
ment have difficulty making the transition to OO development
compared to the performance of developers who have no
traditional development experience (Nelson et al. 1997;
Rosson and Alpert 1990; Rosson and Carroll 1990; Vessey
and Conger 1994). Some researchers have found that expert
software developers who are introduced to OO concepts will
often fall back on their traditional knowledge (Detienne 1995;
Gibson 1991; Manns and Nelson 1996; Pennington et al.
1995) and consequently acquire OO knowledge at a much
slower rate.

Although prior IS research has brought awareness to the
problem of mindshift learning and has provided some insight,
it has not answered the question of why software developers
have difficulty making the transition. This study addresses
that gap by borrowing from schema theory and the concept of
proactive interference.

Understanding the Learning Process B
Knowledge Structures

A schema (originally proposed by Bartlett 1932) can be
thought of as a framework of organized concepts which are
the individual’s representation of experience (Novak and
Tyler 1977); “a cognitive structure that provides situational
forecasts on which individuals rely” (Louis and Sutton 1991,
p. 61); and a representation of a person’s knowledge that
includes both a set of domain-specific concepts and the
relations among those concepts (Dorsey et al. 1999; Johnson-
Laird 1983; Stasz et al. 1976). Other names for schema
include knowledge structures, mental models, conceptual
frameworks, cognitive structures, cognitive maps, and frames
(Aarts and Dijksterhuis 2000; Bartlett 1932; Day et al. 2001;
Dorsey et al. 1999; Gagne 1985; Glaser 1984, 1990; Johnson-
Laird 1983; Kraiger et al. 1993; Rouse and Morris 1986). For
consistency, we use the term knowledge structure hereafter to
represent this concept.

MIS Quarterly Vol. 31 No. 3/September 2007 455

Armstrong & Hardgrave/Transition to Object-Oriented Development

Scholars in a variety of areas such as computer usage (Day et
al. 2001), educational psychology (Sumfleth 1988), language
acquisition (Schmidt 1988), expert systems (Mason and
Tessmer 2000), medicine (Nash and Nash 2003), military
decision making (Kraiger etal. 1995), negotiation (Bazerman
et al. 2000), psychology (Hendrick 1983), and multiple areas
in the marketing field (Aaker and Keller 1990; Boush and
Loken 1991; Broniarczyk and Alba 1994; Lawson and Bhagat
2002; Luna and Peracchio 2002; Shimp et al. 1993) have
studied the impact of knowledge structures on learning. The
relationship between knowledge acquisition, knowledge struc-
tures, and concept knowledge consistently appears as a theme
across these studies.

Concept Knowledge

As discussed earlier, individuals learn software development
via the acquisition of semantic and syntactic knowledge, and
semantic knowledge consists of concepts and the structure of
those concepts (Mayer 1987; Shneiderman 1986; Schneider-
man and Mayer 1979). Concepts have been defined as the
actual ideas and information embodied in the knowledge
(Ausubel 1963) or records of events or objects designated by
a label (Novak 2002). As the individual is introduced to the
concepts, he or she engages in cognitive processing’ to learn
the concepts.

In an incremental learning situation, as the individual is
exposed to a concept, the knowledge structure perceived to
most closely match the concept is activated. As the concept
is learned, it is integrated into the activated knowledge
structure. This modeling process is known as analogical
learning (e.g., Gregan-Paxton and John 1997; Holyoak and
Thagard 1995; Rumelhart and Norman 1981) or learning by
metaphor (Carroll and Thomas 1982). As an individual's
knowledge increases, he or she revises existing knowledge
structures to organize that knowledge (Anderson 1982, 1995;
Ausubel 1963, 1968; Kraiger et al. 1993; Piaget 1978, 1980;
Rist 1989; Rumelhart and Norman 1981). For example, when
a learner familiar with the Visual Basic.Net software
development environment encounters an additional Visual
Basic.Net concept (such as a ComboBox), incremental
learning occurs. The individual activates his or her Visual
Basic.Net software development knowledge structure and
integrates the new concept into that existing structure.

In a mindshift learning situation, a learner will activate an
existing knowledge structure that may only be partially appro-

Cognitive processing occurs when an individual is involved in any type of
information processing, thinking, or learning (Billett 1994).

456 MIS Quarterly Vol. 31 No. 3/September 2007

priate for the new domain. The learner engages in cognitive
processing and attempts to incorporate the concept into his or
her activated knowledge structure. If the learner accesses
knowledge (from the activated knowledge structure) that is
inappropriate in the new domain, he or she experiences pro-
active interference because the existing body of knowledge
interferes with the learning process (Underwood 1957).
Essentially, proactive interference makes it difficult, if not
impossible, to properly understand the concept within the
context of the new mindset (Melton and Irwin 1940;
Underwood 1957).

For example, when a learner familiar with COBOL encoun-
ters an unfamiliar Visual Basic.Net concept (such as a
ComboBox), the individual activates his or her COBOL
knowledge structure and attempts to integrate the new knowl-
edge into that existing structure. As the new information is
inconsistent with the COBOL knowledge structure, inter-
ference occurs. The new knowledge (Visual Basic.Net
ComboBox concept) is incompatible with the existing knowl-
edge structure (COBOL) and cannot be successfully incor-
porated. Subsequently, the learner creates a new Visual
Basic.Net knowledge structure to incorporate the Visual
Basic.Net ComboBox concept knowledge.

Cognitive Processing

As the examples illustrate, the cognitive processing required
and the extent of proactive interference is not consistent
across learning situations. Different learning situations will
require more or less cognitive processing (i.e., incremental
versus mindshift). Similarly, the extent of proactive inter-
ference is dependent on the situation (i.e., the knowledge
being acquired and the knowledge structure activated).

In their work on cognitive processing, Louis and Sutton
(1991) propose three categories of situations that engage the
individual in conscious cognitive processing: novel, discrep-
ant, and deliberate initiative. The novel category suggests a
situation where an individual encounters an aspect not pre-
viously experienced, where something stands out of the
ordinary, is unique, is unfamiliar, or previously unknown
(Louis and Sutton 1991). They suggest that role transitions,
such as promotions, transfers, and career changes, can be
experienced as novel and trigger individuals to engage in
active thinking. The discrepant category describes a situation
where an unexpected failure, a disruption, or a significant
difference exists between expectations and reality (Louis and
Sutton 1991). For example, a performance review would fit
into the discrepant category when a gap occurs between the
individual’s assessment of performance and the manager’s.

Armstrong & Hardgrave/Transition to Object-Oriented Development

Existing Knowledge
Structure
Modification
(incremental)
Introduce > Concept »| New Knowledge
Concepts Learning Knowledge Creation Structure
« Novel (mindshift)
* Discrepant
* Deliberative Initiative

Figure 1. Base Theory of Mindshift Learning

The third category, deliberate initiative, describes an
individual’s response to a request for an increased level of
attention, when asked to think, or while being explicitly
questioned (Louis and Sutton 1991). They suggest that career
planning triggers active thinking because individuals must
stop and reflect on goals, resources, and opportunities.

Base Theory

From the preceding literature review, a base theory of mind-
shift learning is proposed (see Figure 1). Through the
learning process, the introduction of concepts leads to concept
knowledge, which, in turn, modifies an existing knowledge
structure or creates a new one. However, the process will
encounter positive, negative, or no transfer from an existing
knowledge structure. The current study explores the effect of
this transfer on the level of concept knowledge.

Refining the Theory I

To contextualize the theory (the transition of traditional
developers to the OO approach), it was first necessary to
determine which concepts were fundamental to the OO
approach. We utilized the work of Armstrong (2006) that
identified, based on an extensive literature review, a set of
nine concepts that are representative of the fundamental OO
concepts. The OO concepts identified by Armstrong and used
herein are abstraction, attribute, class, encapsulation, inheri-
tance, method, message passing, object, and polymorphism.

From the work of Louis and Sutton (1991) and Armstrong
(2006), it became apparent that a concept’s origin has an
important effect on understanding it. For example, some
studies suggest that several of the OO approach’s concepts are
borrowed from the traditional software development approach
(e.g., abstraction, attribute), whereas other concepts are new
to OO development (e.g., class, inheritance). In addition, the
literature is often contradictory in classifying the concepts.
For example, some have said the encapsulation concept
existed prior to the introduction of OO (Page-Jones and Weiss
1989) while others assert it first appeared in the Simula pro-
gramming language (e.g., Booch 1994). Still others assert
that encapsulation is just a new term for the information-
hiding concept used in traditional development (e.g.,
Henderson-Sellers 1992; Yourdon et al. 1995). Thus, the
concept origin (borrowed, new) could affect the cognitive
processing requirements, and perhaps the level of proactive
interference experienced by the learner.

While the categories proposed by Louis and Sutton (1991)
seemed to roughly correspond to the different cognitive
requirements of the OO concepts as suggested by the litera-
ture review (i.e., borrowed, new), it was necessary to ensure
that the categories were appropriate for the domain under
study. Subsequently, we employed an inductive approach to
refine the theory (as suggested by Eisenhardt [1989] and
Glaser and Strauss [1967]). Using induction, observations
from the field are used to supplement or build theory (Eisen-
hardt 1989). In this case, OO experts were asked to assist
with understanding the /earning portion of Figure 1.

Three expert OO software developers independently per-
formed a card sort of the nine OO concepts into the three cate-

MIS Quarterly Vol. 31 No. 3/September 2007 457

Armstrong & Hardgrave/Transition to Object-Oriented Development

gories suggested by Louis and Sutton: novel, discrepant, and
deliberate initiative (the definition of each category was
provided to the experts). However, the experts experienced
difficulty sorting the concepts into the three categories. They
clearly understood the novel category and had little difficulty
placing concepts into that category (not identical concepts,
but all three placed at least one concept into the novel cate-
gory). They understood less clearly the discrepant and deli-
berate initiative categories. One developer worked his way
through the concept cards and put everything he thought was
novel into that category. He then tried to go through the
remaining concept cards and place concepts into the discre-
pant category, and a third time into the deliberate initiative
category. After all three rounds, several concept cards re-
mained unsorted. Upon further discussion, the developer
disclosed that the leftover concepts were not fitting into any
of the three categories. Another developer placed all of the
concept cards into one of the three categories, but when ques-
tioned as to why a certain concept was in the deliberate initia-
tive category, for example, he responded, “I thought I had to
put cards into each of the piles.” The third developer also
struggled with sorting the concepts into the given categories.

As a result of the failed sorting process, we asked each
developer at the conclusion of the session to create his or her
own categories for the concepts. While the specific concepts
in the groupings differed, the experts created similar concep-
tual groupings of the concepts. Subsequently, three categories
emerged which we call novel, changed, and carryover.

The novel category is defined as any concept not previously
experienced or known (consistent with Louis and Sutton).
The changed category is defined as any concept that had an
existing meaning in traditional development, but has a new
meaning in the OO development context. This category
subsumes Louis and Sutton’s discrepant and deliberate initia-
tive categories. With the introduction of a changed concept,
the learner will activate his or her existing traditional devel-
opment knowledge structure. In this instance the introduced
concept is cognitively close to an existing concept, but the
concept usage is quite different. So, the learner will experi-
ence both the discrepant and deliberative initiative situations
within the changed concepts. The learner will experience the
discrepancy aspect because of the mismatch between the
incoming information and the existing knowledge structure,
and will experience the deliberate initiative aspect because he
or she will have to think about the application of the concept
within the new mindset. The carryover category contains
those concepts that were originally defined in traditional
development and continue to hold the same meaning in OO
development (i.e., the borrowed concepts). Louis and Sutton
did not conceptualize this category because their theory

458 MIS Quarterly Vol. 31 No. 3/September 2007

emphasized triggers for change, and the carryover category—
being a case of non-change—was not included.

One final note on the concept categories: The taxonomy for
each individual will be unique depending on his or her
perception of the novelty of the OO concept (i.e., is it novel
[high novelty], changed [some novelty], or carryover [low
novelty]?). For example, the concept of encapsulation has
been described in the literature as novel, carryover, and
changed, demonstrating that the degree of perceived novelty
may be high (novel), low (carryover), or somewhere in
between (changed). Thus, how each individual perceives the
novelty will determine how the information is cognitively
processed.

From the base theory of mindshift learning (Figure 1) and the
insights gained from the OO experts, we proffer a more re-
fined theory incorporating the newly identified concept cate-
gories (see Figure 2) within the context of the transition from
traditional to OO software development as a specific instance
ofthe more general mindshift learning theory. In this case, the
process of theory extension (i.e., taking a theory in one area
and adapting it to another for application and modification) is
used to create the theory (Osigweh 1989; Weick 1989).
Specifically, we adapt the Louis and Sutton theory to the
software development domain, expand the boundaries of their
theory by the creation of the carryover category, and extend
their theory via the modification of the discrepant and
deliberative initiative categories into the changed category.

Theoretical Explanations
and Hypotheses I

From the literature, it seems clear that within the OO software
development approach an emphasis on learning the con-
ceptual aspects prior to the introduction of coding is key (e.g.,
Crews and Butterfield 2003; Sircar et al. 2001). As the indi-
vidual encounters the fundamental OO concepts, he or she
engages in cognitive processing to learn them. Some of the
concepts introduced to the learner will be novel, and the
introduction of these concepts adds information to his or her
body of concept knowledge. The learner will not have any
knowledge of these concepts in his or her existing traditional
development knowledge structure from which an analogy can
be drawn. The learner will integrate the novel concepts
directly into his or her body of OO concept knowledge, thus
expanding the individual’s existing body of OO knowledge
(or establishing a body of OO concept knowledge, if one did
not already exist). Therefore, the existing traditional knowl-
edge structure will have no influence on a learner’s knowl-
edge of the novel concept.

Armstrong & Hardgrave/Transition to Object-Oriented Development

Traditional Software
Development Knowledge
Structure
Modification
(incremental)

OO Software OO0 Software OO Software
Development Development | Development
Concepts _ Concept .' Knowledge
Learning Knowledge Creation Structure

* Novel (mindshift)
» Changed
* Carryover

Figure 2. Mindshift Learning Theory

Some of the concepts introduced to the learner will be
changed. Changed concepts are defined as those OO con-
cepts that existed in the traditional development approach but
are used differently in the OO approach. A learner’s existing
knowledge structure is regarded as the most crucial factor
influencing learning with the second being the ability to
discriminate between existing information and new infor-
mation (Ausubel 1963). For example, if the learner cannot
distinguish between the existing and the new information, he
or she may inappropriately apply the existing knowledge to
the new domain. This lack of distinction between new ideas
and previously learned information may account for some
proactive interference (Anderson 1995). Therefore, the
existing traditional knowledge structure will negatively
influence a learner’s knowledge of the changed concept.

Some concepts introduced to the learner are carried over into
the new domain (Rumelhart and Norman 1981). A few
studies found the positive transfer of learning to be contingent
on the congruence of students’ existing knowledge and the
information that followed (Doran and Ngoi 1979; Wittrock
and Cook 1975). When a concept is known and consistently
used across the mindsets, it triggers no change in concept
knowledge. For example, one could argue that the concept of
abstraction—the act of representing reality in a simplified
form by removing certain distinctions so that we can see the
commonalities (Morris et al. 1999)—exists in both traditional
and OO development. Assuming that concept is known and
consistently used across both software development ap-
proaches, no change in concept knowledge takes place.
Therefore, the traditional knowledge structure will positively
influence a learner’s knowledge of the carryover concept.

To summarize the theory, the introduced concepts can be per-
ceived as novel (high novelty), carryover (low novelty), and
changed (somewhere in between). The knowledge acquired
for each OO concept will be influenced to a greater or lesser
degree by the existing traditional development knowledge
structure. Specifically, we expect changed concept knowl-
edge to be influenced negatively by the existing traditional
development knowledge structure such that carryover and
novel concept knowledge will be higher due to the lack of
proactive interference. Carryover concept knowledge, which
will be positively influenced by the existing traditional devel-
opment knowledge structure, should be higher than novel con-
cept knowledge, which is not influenced by an existing
knowledge structure. Therefore, the level of concept knowl-
edge should be high when the degree of perceived novelty is
near 0 percent (carryover concepts), decrease as the degree of
novelty increases and proactive interference occurs (changed
concepts), and then increase again as the degree of novelty
approaches 100 percent (novel concepts).

From the previous discussion, we hypothesize that the degree
of perceived novelty of an OO concept should affect learning,
and ultimately, the developer’s knowledge (as reflected by an
objective score) of that OO concept such that

HI. A developer’s OO concept knowledge score
will have a U-shaped (curvilinear) relationship with
the degree of perceived novelty.

Specifically, we expect differences in the concept knowledge

acquired for the three concept categories to demonstrate the
curvilinear relationship such that

MIS Quarterly Vol. 31 No. 3/September 2007 459

Armstrong & Hardgrave/Transition to Object-Oriented Development

Traditional Software
Development
Knowledge Structure

OO Software ggjgﬁvr;iﬁ
Development A > C P i
Concepts Learning Kng:vfeec? o
* Novel 9
» Changed
« Carryover

Figure 3. Mindshift Learning Theory, Portion Under Study

H2. A developer’s carryover concept knowledge
score will be greater than his or her changed con-
cept knowledge score.

H3. A developer’s carryover concept knowledge
score will be greater than his or her novel concept
knowledge score.

H4. A developer’s novel concept knowledge score
will be greater than his or her changed concept
knowledge score.

As suggested by the hypotheses, the initial portion of the
theory is examined in this study (see Figure 3). While this
may not be the most vital part of the mindshift learning pro-
cess, it is an important and necessary first step in developing
an overall understanding of mindshift learning in this environ-
ment. Ifno difference exists in the OO concept knowledge of
software developers across the concept categories, then there
is no need to examine the full theory in its current form
(Figure 2). Therefore, this study represents the first phase in
examining the overall proposed theory.

Method I
Subjects

A survey was distributed via mail or e-mail to a contact
person within a set of organizations that agreed to participate
in this research. The contact person, in turn, distributed the
surveys to potential subjects. Survey eligibility required that
each subject had experience with both traditional and OO
software development. Unfortunately, but necessarily, this
requirement severely limited the set of potential subjects.
Overall, data were collected from 81 object-oriented (OO)

460 MIS Quarterly Vol. 31 No. 3/September 2007

software developers representing 16 companies from various
industries (e.g., retailing, transportation, utilities, and govern-
ment), with a response rate of 39 percent. The demographics
of the sample can be found in Table 1.

Instrument Development

Because no instrument existed to measure OO conceptual
knowledge or concept categorization, the necessary scales
were developed as part of this study. The instrument’s first
section consisted of nine items and captured each concept’s
categorization by measuring its degree of perceived novelty
on a scale from 0 to 100 percent. The second section con-
sisted of 27 items that measured a subject’s OO concept
knowledge. The items were originally compiled from OO
texts, reference books, and the authors’ experience with the
OO approach. Each concept was measured using three-item
scales that were developed and validated as part of this
research. The third section consisted of nine items that cap-
tured the level of perceived learning difficulty for each
concept (on a seven-point Likert scale). See Appendix A for
the complete instrument.

Instrument Validation and Pilot Study

Four peers evaluated the instrument, assessing face and con-
tent validity (see Straub 1989). As a result, we reworded
items and, in some cases, dropped possibly ambiguous items,
consistent with DeVellis’s (2003) recommendations for scale
development. We then conducted a focus group with 10 soft-
ware developers (who possessed both traditional and OO soft-
ware development experience) to evaluate the instrument and
provide feedback. The developers gathered in a conference
room at their organization to complete the instrument and

Armstrong & Hardgrave/Transition to Object-Oriented Development

Table 1. Sample Demographics

Variable Value
Gender 86% Male
14% Female
Age
<21 0%
21-30 44%
31-40 42%
41 -50 9%
> 50 4%
Years of IS Experience 9.27
Years of Organizational Tenure 6.49
Years of Traditional Software Development Experience 6.78
Years of OO Software Development Experience 3.84

were debriefed after completing it. We subsequently deleted
or reworded questions based on this additional feedback.
Once completed, we distributed the instrument as detailed
previously.

Results I

To test the first hypothesis, we standardized the data and then
analyzed it using polynomial regression in SPSS 12.0. The
independent variable was the degree of perceived novelty, and
the dependent variable was an individual’s OO concept
knowledge score. We scored each item on the OO concept
knowledge scale as a one for a correct answer and a zero for
an incorrect answer. With three questions per concept, each
concept’s minimum score was zero and its maximum score
was three. We created a record for each concept for each
participant for a total of 729 observations (81 respondents x
9 OO0 concepts). Each observation contained the respondent
number, the concept identifier (e.g., object), the degree of
perceived novelty, the concept knowledge score, and the level
of perceived learning difficulty. To capture the curvilinear
aspects of the model, the quadratic model is expressed as

0O Concept Knowledge Score =
a+ B, x Novelty + B, x Novelty’ (1)

The results indicate that the quadratic model provides an
appropriate fit for the data (see Table 2 and Figure 4). From
the results, we can see that both the degree of perceived
novelty and the squared term are significant predictors of OO

concept knowledge score. Taken together, the table and
figure demonstrate that the curvilinear relationship more
accurately represents the data, thus supporting HI1.

Given the support for Hypothesis 1, the remaining hypotheses
investigating the differences among concept categories can be
examined. But, first, it was necessary to categorize the con-
cepts (by subject) so that a comparison by category could be
conducted (to test H2 through H4). To determine concept
category (based on degree of perceived novelty), a visual
inspection of the degree of perceived novelty histograms at
the concept level revealed consistent patterns of responses
(per concept), suggesting category cutoffs of 25 percent and
75 percent. Specifically, concepts identified in the 0 to 24
percent novel range were categorized as carryover; those in
the range of 25 to 75 percent were categorized as changed;
and those in the range 76 to 100 percent were categorized as
novel. For example, if a respondent found an object concept
80 percent novel, then it was categorized as novel, but if she
found it only 10 percent novel, then it was categorized as
carryover. Because the use of histograms could be considered
arbitrary, we then conducted a sensitivity analysis to deter-
mine the impact of various combinations of cutoff points. We
found that while the actual mean OO concept knowledge
score of the categories differed slightly (but not significantly),
any cutoff points ranging from 20 to 30 percent for the lower
bound and 65 to 80 percent for the upper bound produced the
same pattern of results. Ultimately, we used the original 25/75
split. Thus, while any cutoff points could be argued as arbi-
trary, we believe that the cutoffs used in this analysis are
robust and reflective of the nature of the data. The categories
are illustrated in Figure 4.

MIS Quarterly Vol. 31 No. 3/September 2007 461

Armstrong & Hardgrave/Transition to Object-Oriented Development

Table 2. Regression Results for Degree of Perceived Novelty ‘

A. Quadratic Model

Analysis of Variance

DF Sum of Squares Mean Square
Regression 2 56.117 28.059
Residuals 724 671.869 0.928
F =30.238 Sig. F = 0.000
Variables in the Equation
Variable Beta Std. Error. T Sig. T
(Constant) .000 .036 .006 .995
DegNov -1.029 .150 —6.838 .000
DegNov2 1.131 .150 7.522 .000

B. Linear Model

Analysis of Variance

DF Sum of Squares Mean Square
Regression 1 3.608 3.608
Residuals 725 724.379 .999
F=23.611 Sig. F = 0.058
Variables in the Equation
Variable Beta Std. Error. T Sig. T
(Constant) .000 .037 .006 .995
DegNov .070 .038 1.900 .058

Dependent variable: OO concept knowledge score
Independent variables: DegNov (degree of perceived novelty), DegNov2 (degree of perceived novelty squared)

S Quadratic
S .
8 3 | Linear
N i !
[}) \ !
m \‘ ‘l
° | !
2 \ /
% /
>3 |]
- /\/
o .
[] A
Q N -
: ~
S e
(&)
1|

OH_J 25 — 75 100
Carryover Changed Novel

Degree of Novelty (%)

Figure 4. Regression Curve ‘

462 MIS Quarterly Vol. 31 No. 3/September 2007

Table 3. Object Concept Categorization

Armstrong & Hardgrave/Transition to Object-Oriented Development

Novel Changed Carryover
Subject 1 2
Subject 2 1
Subject 3 3
Subject 4 2
Subject 5 0
Mean Object Concept Knowledge Score 2.0 0.5 2.5

Table 4. OO Concept Knowledge Scores by Category

Concept Novel Changed Carryover
Abstraction 2.08 (n = 39) 1.70 (n = 23) 2.32(n=19)
Attribute 1.78 (n=9) 1.47 (n = 34) 2.55 (n = 38)
Class 2.62 (n=47) 2.16 (n = 25) 2.33(n=9)
Encapsulation 2.75 (n = 36) 1.27 (n = 33) 2.83(n=12)
Inheritance 2.22 (n = 67) 1.55(n=11) 2.00(n=3)
Message Passing 217 (n=12) 1.59 (n = 32) 2.08 (n = 37)
Method 1.50 (n = 8) 1.37 (n=27) 1.98 (n = 46)
Object 2.36 (n =47) 2.04 (n=27) 229(n=7)
Polymorphism 2.14 (n =64) 1.50 (n =12) 1.80 (n=5)
Overall Mean 2.29 (n = 329) 1.62 (n = 224) 2.24 (n = 176)

Cell Values: mean (sample size)

Note: The sample size in each cell indicates the number of times the concept was placed in that category. For example, for the Abstraction
concept, 39 individuals categorized it as novel, 23 as changed, and 19 as carryover. For the overall mean, the sample size indicates the total
number of times something was placed in that category. Each row’s sample size is 81 (for the number of respondents); the total table sample size

is 729 (81 respondents x 9 concepts).

Table 5. Concept Categorization of Test Statistics

Analysis of Variance

DF Sum of Squares Mean Square
Between Groups 2 66.772 33.386
Within Groups 726 543.228 .748
F =44.619 | Sig. F = 0.000
t Tests
Hypothesis Concept Comparison T df Sig.
2 Carryover > Changed —7.007 388.289 .000
3 Carryover > Novel .603 350.366 .547
4 Novel > Changed 8.730 443.897 .000

MIS Quarterly Vol. 31 No. 3/September 2007

463

Armstrong & Hardgrave/Transition to Object-Oriented Development

Once we determined the cutoff points, we placed the OO
concept knowledge scores into the appropriate categories.
For example, if a person perceived “object” as a novel con-
cept then his or her score on the object concept (0 to 3) would
be added to the novel object concept knowledge score. If
another person perceived object as a carryover concept, then
his or her concept knowledge score would be added to the
carryover object concept knowledge score. See Table 3 for the
object concept example.

This procedure was followed for each subject for each con-
cept and then aggregated yielding means for each category (as
shown in Table 4). The mean for the novel concepts was
2.29, the changed concepts 1.62, and the carryover concepts
2.24.

A one-way analysis of variance with contrasts was used to
determine if the OO concept knowledge scores for the three
categories (novel, changed, and carryover) were statistically
significantly different. As shown in Table 5, two of the three
hypotheses were supported. The carryover concept mean
(2.24) was significantly greater than the changed concept
mean (1.62), thus supporting H2. The carryover concept mean
(2.24) was not significantly different (greater) than the novel
concept mean (2.29). Thus, H3 was not supported. Lastly, the
novel concept mean (2.29) was significantly greater than the
changed concept mean (1.62), thus supporting H4.

Discussion I

The proposed MLT provides a plausible explanation for the
learning difficulties encountered during a mindshift and has
implications for both theory and practice. The theory suggests
that an individual’s perception of each OO concept’s novelty
impacts the learning process. Specifically, and as hypothe-
sized, the changed concepts prove most problematic for the
learner such that developers performed better on concepts
perceived to be more (novel) or less (carryover) novel
(compared to changed). We argue that existing traditional
software development knowledge interfered with the learning
of some OO development concepts. This occurred because
the concepts perceived as changed are cognitively close to
traditional development concepts that the learner has used
(possibly for a long time). Conversely, when the learner
perceives she is learning novel OO concepts, she has no
existing traditional development knowledge from which to
draw or use as an analogy. When learning the carryover OO
concepts, the learner is very familiar with the concepts and
their usage from the traditional development approach.

Contrary to hypothesis 3, we did not find a significant dif-

ference in OO concept knowledge score between novel and
carryover concepts. One possible explanation for the lack of

464 MIS Quarterly Vol. 31 No. 3/September 2007

difference between these two categories is, over time, a
respondent’s novel concept knowledge improved to the point
that it was equal to his or her knowledge of the carryover
concepts. Specifically, the years of OO experience may have
been a factor. To explore this variable further, we first ex-
amined the possibility that the developers’ years of OO
experience affected the OO concept knowledge scores. A
correlation analysis between years of OO experience and
concept knowledge score did, indeed, reveal a small, but
significant, result (r =.130; p =.001). Due to the significant
correlation representing a rival explanation to our overall
findings (i.e., that OO concept knowledge score varies by
degree of perceived novelty), we added years of OO experi-
ence to the existing regression equation (see equation 1) as a
control variable. As shown in Table 6, years of OO experi-
ence has a significant relationship with concept knowledge
score, but does not attenuate the importance of the degree of
perceived novelty in the regression. We further tested for an
interaction effect between years of OO experience and degree
of perceived novelty and found it nonsignificant (Table 6).
Thus, while years of OO experience has a small positive im-
pact on OO concept knowledge score, the degree of perceived
novelty provides the major influence on OO concept learning.

To further investigate years of OO experience relative to OO
concept knowledge score, we examined the correlations by
concept category (novel, changed, carryover). In other words,
do OO concept knowledge scores improve over time (with
years of experience) within each of the concept categories?
As shown in Table 7, correlations between OO concept
knowledge score and years of OO experience within the novel
and carryover categories are borderline significant (p = .102
and .059, respectively), while the changed category is not
significant (p = .232). Thus, it appears that the OO concept
knowledge for the novel and carryover categories may im-
prove slightly over time, whereas the OO concept knowledge
for the changed category does not. This finding has important
implications as it would suggest that the problems caused by
proactive interference tend to persist over time.

Next, we turned our attention to the possible interplay
between years of OO experience and degree of perceived
novelty at the concept level. One might expect that a devel-
oper with many years of OO experience may view OO
concepts as less novel whereas a developer with less OO
experience may view OO concepts as more novel. To rule out
the possibility that a respondent’s years of OO experience
influenced his or her assessment of the degree of perceived
novelty of the OO concepts, we examined the correlation
between the two by concept (i.e., object, polymorphism, class,
etc.). Asshown in Table 8, none of the correlations are signi-
ficant. Thus, one’s assessment of the degree of perceived
novelty of the OO concepts does not appear to vary by years
of OO experience.

Armstrong & Hardgrave/Transition to Object-Oriented Development

Table 6. Regression Results for Years of OO Experience ‘

Analysis of Variance
DF Sum of Squares Mean Square
Regression 4 72.456 18.114
Residuals 686 614.604 .896
F =20.218 Sig. F = 0.000
Variables in the Equation

Variable Beta Std. Error. T Sig. T
(Constant) .033 .036 .923 .357
DegNov —-.980 161 —6.071 .000
DegNov2 1.162 151 7.691 .000
YrsOO 161 .064 2.514 .012
YrsOODegNov —.081 .086 —-.935 .350

Dependent variable: OO concept knowledge score

Independent variables: DegNov (degree of perceived novelty), DegNov2 (degree of perceived novelty squared), YrsOO (years of OO experience),

YrsOODegNov (years of OO experience x degree of perceived novelty)

Table 7. Correlation Analysis: OO Concept Knowledge Score and Years of OO Experience by Concept

Category

00 Concept Knowledge Score

Pearson Correlation Sig. (2-tailed)
Novel (n = 301) .094 102
Years of OO Experience Changed (n = 220) .081 232
Carryover (n = 172) 144 .059

Table 8. Correlation Analysis: Years of OO Experience and Degree of

Perceived Novelty by Concept

Concept Pearson Correlation Sig.
Abstraction 132 .254
Attribute —-.152 .188
Class .087 452
Encapsulation -.079 496
Inheritance .082 476
Message Passing .030 .800
Method —.051 .657
Object -.009 .935
Polymorphism —.088 .391

*Correlation between years of OO experience and degree of perceived novelty.

MIS Quarterly Vol. 31

No. 3/September 2007

Armstrong & Hardgrave/Transition to Object-Oriented Development

Table 9. Regression Results with Level of Perceived Learning Difficulty ‘

Analysis of Variance
DF Sum of Squares Mean Square
Regression 4 57.665 14.416
Residuals 717 661.384 922
F =15.629 Sig. F = 0.000
Variables in the Equation

Variable Beta Std. Error. T Sig. T
(Constant) .005 .036 130 .896
DegNov —.999 153 -6.512 .000
DegNov2 1.130 .159 7.111 .000
Diff -0.28 .084 -.339 .735
YrsDegNovDiff —-.021 119 -174 .862

Dependent variable: OO concept knowledge score

Independent variables: DegNov (degree of perceived novelty), DegNov2 (degree of perceived novelty squared), Diff (level of perceived learning
difficulty), DegNovDiff (degree of perceived novelty x level of perceived learning difficulty)

Another potential influence on OO concept knowledge score
may be a particular concept’s difficulty or complexity. For
example, one could hypothetically say that polymorphism is
a more difficult (complex) concept than attribute. Therefore,
we would expect a developer to score higher on the OO
concept knowledge scale for the attribute concept than for the
polymorphism concept, regardless of the degree of perceived
novelty. Unfortunately, no objective measure of OO concept
complexity exists. Therefore, to examine the possibility that
the concepts’ difficulty influenced the differences in OO
concept knowledge scores, we asked respondents to recall
when they first learned each concept and indicate the level of
perceived learning difficulty (as a subjective measure of
complexity). Overall, no significant correlation existed
between the level of perceived learning difficulty and OO
concept knowledge score (r = —.035, p = .346). Next, the
difficulty measure was added to the regression to test for an
interaction effect (with degree of perceived novelty). As
shown in Table 9, there is no relationship between the level of
perceived learning difficulty and the OO concept knowledge
score. While we find this result encouraging, future research
should consider the development of objective measures of OO
concept complexity and the incorporation thereof as a control
variable in this theory.

Limitations and Future Research
In this study, we used a cross-sectional, post-learning design.

With this design, it was not possible to test directly the impact
of experience over time on OO concept knowledge. Ideally,

466 MIS Quarterly Vol. 31 No. 3/September 2007

we would like to test an individual’s knowledge at various
points in time (i.e., using a within-subjects design rather than
a between-subjects design). The perceived novelty measure,
while meant to be current, may be affected by the passage of
time (e.g., a developer’s perception of novelty 5 years after
learning a concept may be different than when it was first
introduced). Although we found no correlation between the
degree of perceived novelty and years of OO experience, the
only way to truly rule out the effect of time would be to
conduct a longitudinal study. Using both current (OO concept
knowledge scores) and retrospective (level of perceived
learning difficulty) measures may have also confounded the
results by intermingling two time periods. Lastly, because we
measured both concept knowledge and perceived novelty
cross-sectionally, one could speculate that the level of concept
knowledge may influence the degree of perceived novelty (as
opposed to the degree of perceived novelty influencing the
OO concept knowledge score). Overall, a longitudinal,
within-subjects design which follows a learner throughout the
process would attenuate the aforementioned shortcomings.

Future research focused on broader processes might consider
other scenarios within OO software development. For
example, research could address the situation in which an
individual is introduced to concept knowledge from a new
mindset (e.g., OO software development) but has no existing
related knowledge structure (e.g., no software development
experience) upon which to draw. At the other extreme,
research could address the case in which a learner introduced
to concept knowledge from a new mindset (e.g., OO software
development) draws on multiple existing software develop-

ment knowledge structures (e.g., structured, data-oriented). In
general, questions such as from which (if any) existing knowl-
edge structure domain(s) the learner would draw, and how
many different existing knowledge structures would be
utilized, could be of interest.

In addition to providing new explanations as to why mindshift
learning is so difficult within the transition from the tradi-
tional to the OO approach, the theory has the potential to
generalize to other mindshift learning situations. Whether the
shift under study is within the software development field,
information systems, or other aspects of organizations, the
principles identified in the MLT may improve understanding
of the difficulties individuals will encounter during these
transitions.

Implications

This research has significant implications for managers
because the advances in tools, techniques, and methods will
continue, and most likely increase in their frequency of
introduction (Bettis and Hitt 1995). Thus, organizations will
likely require software developers to make frequent mind-
shifts. Those organizations already committed to the shift
from traditional to OO development may use the MLT as a
basis for decision-making regarding the emphasis of re-
training resources. Those considering the switch to OO
development may use it to ease management concerns or
increase commitment.

Organizations can adapt training programs to place differen-
tial emphasis on the OO concepts for different developers
during the training process. For example, computer-based
training modules with different perspectives could be devel-
oped for each concept (such as abstraction-novel, abstraction-
changed, abstraction-carryover). After introducing the key
concepts to students, an on-line diagnostic test (perhaps
similar to the instrument developed here) could determine
potential problem areas (i.e., perceived changed concepts).
The organization could then provide customized training
modules based on the results of the test.

In a face-to-face format, an understanding of the audience
could help an instructor tune the training (post-introductory
sessions). Even if training is not customized to each
individual, but instead to a large portion of the class, that
understanding may help overall learning effectiveness. For
example, if a portion of the class perceived a concept as
changed, an instructor could modify her message to include
a participatory discussion of the concept’s usage in the
previous domain, or perhaps a discussion to evoke the

Armstrong & Hardgrave/Transition to Object-Oriented Development

concept’s differences between the previous domain usage and
its current domain usage (see Nelson et al. 2002). This may
allow the learner to more accurately incorporate the concept
into his or her knowledge structure of the new domain.
Understanding and utilizing the concept categorization may
attenuate the proactive interference and increase training
effectiveness.

Conclusion I

The motivation for this research was to understand the diffi-
culties individuals experience when they are involved in a
mindshift learning situation. Within the software develop-
ment domain, previous research has determined that mindshift
learning is more difficult than incremental learning, although
it has not discovered why. To answer that question, this study
posits and examines the mindshift learning theory within the
context of the transition from traditional to OO software
development. Specifically, we describe and test how the
degree of perceived novelty (novel, changed, and carryover)
of the fundamental OO concepts influences OO concept
knowledge. Our findings indicate that individuals had higher
scores on the OO concepts they perceived as novel or
carryover than those they perceived as changed.

An understanding of the learning processes involved in
transitioning from one mindset to another could aid change
management initiatives, instructional design, and the learning
process, and ultimately increase the benefits of the new
mindset. From a theoretical perspective, questions of cogni-
tive processing, knowledge structures, and proactive inter-
ference are important to our understanding of mindshift
learning and should continue to be explored.

Acknowledgments

The authors would like to thank the senior editor, associate editor,
and three anonymous reviewers for their helpful and insightful
comments and suggestions for this paper. The authors would also
like to acknowledge the Information Technology Research Institute
at the Sam M. Walton College of Business at the University of
Arkansas for assistance in the funding of this project. Finally, the
first author would like to acknowledge her hero, Ken Armstrong.

References
Aaker, D., and Keller, K. L. “Consumer Evaluations of Brand

Extensions,” Journal of Marketing (54:1), January 1990, pp.
27-41.

MIS Quarterly Vol. 31 No. 3/September 2007 467

Armstrong & Hardgrave/Transition to Object-Oriented Development

Aarts, H., and Dijksterhuis, A. “Habits as Knowledge Structures:
Automaticity in Goal-Directed Behavior,” Journal of Personality
and Social Psychology (78:1), January 2000, pp. 53-63.

Adelson, B. “Problem Solving and the Development of Abstract
Categories in Programming Languages,” Memory and Cognition
(9:4), 1981, pp. 422-433.

Adelson, B. “When Novices Surpass Experts: The Difficulty of a
Task May Increase with Expertise,” Journal of Experimental
Psychology: Learning, Memory and Cognition (10:3), 1984, pp.
483-495.

Anderson, J. R. “Acquisition of Cognitive Skill,” Psychological
Review (89), 1982, pp. 369-406.

Anderson, J. R. Learning and Memory, Wiley, New York, 1995.

Armstrong, D. J. “The Quarks of Object-Oriented Development,”
Communications of the ACM (49:2), 2006, pp. 123-128.

Ausubel, D. P. Educational Psychology: A Cognitive View, Holt,
Rinehart and Winston, Inc, New York, 1968.

Ausubel, D. P. The Psychology of Meaningful Verbal Learning,
Grune and Stratton, New York, 1963.

Bartlett, F. C. Remembering: A Study in Experimental and Social
Psychology, University Press, Cambridge, England, 1932.

Bartunek, J. M., and Moch, M. K. “First-Order, Second-Order, and
Third-Order Change and Organization Development Interven-
tions: A Cognitive Approach,” The Journal of Applied Beha-
vioral Science (23:4), December 1987, pp. 483-501.

Bayman, P., and Mayer, R. E. “Using Conceptual Models to Teach
BASIC Computer Programming,” Journal of Educational
Psychology (80:3), 1988, pp. 291-298.

Bazerman, M. H., Curhan, J. R., Moore, D. A., and Valley, K. L.
“Negotiation,” Annual Review of Psychology (51), 2000, pp.
279-315.

Bettis, R. A., and Hitt, M. A. “The New Competitive Landscape,”
Strategic Management Journal (16), Summer 1995, pp. 7-19.
Billett, S. “Situating Learning in the Workplace: Having Another
Look at Apprenticeships,” Industrial and Commercial Training

(26:11), 1994, pp. 9-16.

Booch, G. Object Oriented Analysis and Design with Applications,
Benjamin/Cummings Publishing Company, Inc., Redwood City,
CA, 19%4.

Boush, D., and Loken, B. “A Process Tracing Study of Brand
Extension Evaluation,” Journal of Marketing Research (28:1),
February 1991, pp.16-28.

Broniarczyk, S., and Alba, J. “The Importance of the Brand in
Brand Extension,” Journal of Marketing Research (31:2), May
1994, pp. 214-228.

Burrell, G., and Morgan, G. Sociological Paradigms and Organiza-
tional Analysis, Heineman, London, 1979.

Carroll, J. M., and Thomas, J. C. “Metaphor and the Cognitive
Representation of Computing Systems,” IEEE Transactions on
Systems, Man and Cybernetics, SMC (12:2), 1982, pp. 107-116.

Corritore, C. L., and Wiedenbeck, S. “What Do Novices Learn
During Program Comprehension?,” International Journal of
Human Computer Interaction (3:2), 1991, pp. 199-123.

Crews, T., and Butterfield, J. “Improving the Learning Environment
in Beginning Programming Classes: An Experiment in Gender
Equity,” Journal of Information Systems Education (14:1) 2003,
pp. 69-76.

468 MIS Quarterly Vol. 31 No. 3/September 2007

Culbert, S. Mind-Set Management, Oxford University Press, New
York, 1996, pp. 14-21.

Day, E. A., Arthur Jr., W., and Gettman, D. “Knowledge Structures
and the Acquisition of a Complex Skill,” Journal of Applied
Psychology (86:5), October 2001, pp. 1022-1033.

Detienne, F. “Design Strategies and Knowledge in Object-Oriented
Programming: Effects of Experience,” Human Computer Inter-
action (10:2/3), 1995, pp. 129-169.

DeVellis, R. F. Scale Development: Theory and Applications (2™
ed.), Sage Publications Inc., London, 2003.

Doran, R., and Ngoi, M. K. “Retention and Transfer of Selected
Science Concepts in Elementary School Students,” Journal of
Research in Science Teaching (16:3), 1979, pp. 211-216.

Dorsey, D. W., Campbell, G. E., Foster, L. L., and Miles, D. E.
“Assessing Knowledge Structures: Relations with Experience
and Post-Training Performance,” Human Performance (12),
1999, pp. 31-57.

Dyck, J. L., and Mayer, R. E. “Teaching for Transfer of Computer
Program Comprehension Skill,” Journal of Educational Psychol-
ogy (81:1), March 1989, pp. 16-24.

Eisenhardt, K. M. “Building Theories from Case Study Research,”
Academy of Management Review (14:4), October 1989, pp.
532-551.

Gagne, R. M. The Conditions of Learning, and Theory of Instruc-
tion (4™ ed.), Holt, Rinehart and Winston, Inc., Fort Worth, TX,
1985.

Gash, D. C., and Orlikowski, W. J. “Changing Frames: Toward an
Understanding of Information Technology and Organizational
Change,” Academy of Management Proceedings, 1991, pp.
189-193.

George, F. “Transitioning to a Two-Crew Cockpit: Two Heads are
(Almost) Always Better Than One, But Those New to Shared
Responsibilities Have to Work for the Benefits,” Business and
Commercial Aviation (91:1), July 2002, pp. 64-68..

Gibson, E. “Flattening the Learning Curve: Educating Object-
Oriented Developers,” Journal of Object Oriented Programming
(3:6), February 1991, pp. 24-29.

Glaser, R. “Education and Thinking: The Role of Knowledge,”
American Psychologist (39:2), February 1984, pp. 93-104.

Glaser, R. “The Reemergence of Learning Theory within Instruc-
tional Research,” American Psychologist (45:1), January 1990,
pp. 29-40.

Glaser, R., and Strauss, A. The Discovery of Grounded Theory,
Aldine Press, Chicago, IL, 1967.

Gould S. J., and Eldredge, N. “Punctuated Equilibria: The Tempo
and Mode of Evolution Reconsidered,” Paleobiology (3:2), 1977,
pp. 115-151.

Gregan-Paxton, J., and John, D. R. “Consumer Learning by
Analogy: A Model of Internal Knowledge Transfer,” Journal of
Consumer Research (24:3), December 1997, pp. 226-245.

Guerin, B., and Matthews, A. “The Effects of Semantic Complexity
on Expert and Novice Computer Program Recall and Compre-
hension,” The Journal of General Psychology (117:4), October
1990, pp. 379-389.

Hardgrave, B. C., and Doke, E. R. “Cobol in an Object-Oriented
World: A Learning Perspective,” IEEE Sofiware (17:2), March
2000, pp. 26-29.

Henderson-Sellers, B. A Book of Object-Oriented Knowledge,
Prentice Hall, Englewood Cliffs, NJ, 1992.

Hendrick, H. W. “Pilot Performance Under Reversed Control Stick
Conditions,” Journal of Occupational and Organizational
Psychology (56:4), 1983, pp. 297-301.

Hirschheim, R., and Klein, H. K. “Four Paradigms of Information
Systems Development,” Communications of the ACM (32:10),
October 1989, pp. 1199-1216.

Holyoak, K. J., and Thagard, P. R. Mental Leaps: Analogy in Crea-
tive Thought, MIT Press, Cambridge, MA, 1995.

Tivari, J., Hirschheim, R., and Klein, H. K. “A Dynamic Framework
for Classifying Information Systems Development Metho-
dologies and Approaches,” Journal of Management Information
Systems (17:3), Winter 2000-2001, pp. 179-218.

livari, J., Hirschheim, R., and Klein, H. K. “A Paradigmatic
Analysis Contrasting Information Systems Development Ap-
proaches and Methodologies,” Information Systems Research
(9:2), June 1998, pp. 164-193.

Johnson-Laird, P. N. Mental Models, Harvard University Press,
Cambridge, MA, 1983.

Kraiger, K., Ford, K. J., and Salas, E. “Application of Cognitive,
Skill Based and Affective Theories of Learning Outcomes to
New Methods of Training Evaluation,” Journal of Applied
Psychology (78:2), April 1993, pp. 311-328.

Kraiger, K., Salas, E., and Cannon-Bowers, J. A. “Measuring
Knowledge Organization as a Method for Assessing Learning
During Training,” Human Factors (37:4), 1995, pp. 804-816.

Kuhn, T. S. The Structure of Scientific Revolutions (2™ ed.),
University of Chicago Press, Chicago, IL, 1970.

Lawson, R., and Bhagat, P. S. “The Role of Price Knowledge in
Consumer Product Knowledge Structures,” Psychology and
Marketing (19:6), June 2002, pp. 551-560.

Louis, M. R., and Sutton, R. I. “Switching Cognitive Gears: From
Habits of Mind to Active Thinking,” Human Relations (44:1),
January 1991, pp. 55-76.

Luna, D., and Peracchio, L. A. “Uncovering the Cognitive Duality
of Bilinguals Through Word Association,” Psychology and
Marketing (19:6), June 2002, pp. 457-476.

Manns, M. L., and Nelson, H. J. “Retraining Procedure-Oriented
Developers: An Issue of Skill Transfer,” Journal of Object-
Oriented Programming, November-December, 1996, pp. 6-10.

Mason, S. D., and Tessmer, M. A. “Expert Systems as a Mindtool
to Facilitate Mental Model Learning,” Educational Technology,
Research and Development (48:4), 2000, pp. 43-63.

Mayer, R. E. “Cognitive Aspects of Learning and Using a Pro-
gramming Language,” in Interfacing Thought: Cognitive Aspects
of Human-Computer Interaction, J. M. Carroll (ed.), MIT Press,
Cambridge, MA, 1987, pp. 61-79.

McKeithen, K., Reitman, J., Rueter, H., and Hirtle, S. “Knowledge
Organization and Skill Differences in Computer Programmers,”
Cognitive Psychology (13), 1981, pp. 307-325.

Melton, A. W., and Irwin, J. M. “The Influence of the Degree of
Interpolated Learning on Retroactive Inhibition and the Overt
Transfer of Specific Responses,” American Journal of Psychol-
ogy (53), 1940, pp. 173-203.

Morris, M. G., Speier, C., and Hoffer, J. A. “An Examination of
Procedural and Object-Oriented Systems Analysis Methods:

Armstrong & Hardgrave/Transition to Object-Oriented Development

Does Prior Experience Help or Hinder Performance?” Decision
Sciences (30:1), Winter 1999, pp. 107-137.

Nash, J. D., and Nash, J. M. “A Structural Representation of
Migraine Diagnostic Criteria: The Experts View,” Headache
(43:4), 2003, pp. 322-329.

Nelson, H. J., Armstrong, D. J., and Ghods, M. “Teaching Old Dogs
New Tricks,” Communications of the ACM (45:10), 2002, pp.
132-137.

Nelson, H. J., Irwin, G., and Monarchi, D. E. “Journeys Up the
Mountain: Different Paths to Learning Object-Oriented Pro-
gramming,” Accounting, Management and Information Tech-
nology (7:1), January 1997, pp. 53-85.

Novak, J. D. “Meaningful Learning: The Essential Factor for
Conceptual Change in Limited or Inappropriate Propositional
Hierarchies Leading to Empowerment of Learners,” Science
Education (86:4), July 2002, pp. 548-571.

Novak, J. D., and Tyler, R. W. A Theory of Education, Cornell
University Press, Ithaca, NY, 1977.

Nowaczyk, R. H. “The Relationship of Problem Solving Ability and
Course Performance Among Novice Programmers,” International
Journal of Man-Machine Studies (21), 1984, pp. 149-160.

Osigweh, C. A. B. “Concept Fallibility in Organizational Science,”
Academy of Management Review (14:4), 1989, pp. 579-594.

Page-Jones, M., and Weiss, S. “Synthesis: An Object-Oriented
Analysis and Design Method,” American Programmer (2:7/8),
1989, pp. 64-67.

Pennington, N., Lee, A., and Rehder, B. “Cognitive Activities and
Levels of Abstraction in Procedural and Object-Oriented
Design,” Human Computer Interaction (10), 1995, pp. 171-226.

Piaget, J. Adaptation Vtale et Pychologie de L 'intelligence (Adapta-
tion and Intelligence: Organic Selection and Phenocopy), Trans-
lated by Stewart Eames, University of Chicago Press, Chicago,
1980.

Piaget, J. Behavior and Evolution, Translated by Donald Nicholson-
Smith, Pantheon Books, New York, 1978.

Rist, R. “Schema Creation in Programming,” Cognitive Science
(13), 1989, pp. 389-414.

Rosson, M., and Alpert, S. R. “The Cognitive Consequences of
Object-Oriented Design,” Human Computer Interaction (5),
1990, pp. 345-379.

Rosson, M., and Carroll, J. “Climbing the Smalltalk Mountain,”
ACM SIGCHI Bulletin (21:3), 1990, pp. 76-79.

Rouse, W. B., and Morris, N. M. “On Looking Into the Black Box:
Prospects and Limits in the Search for Mental Models,”
Psychological Bulletin (100:3), November 1986, pp. 349-363.

Rumelhart, D. E., and Norman, D. A. “Analogical Processes in
Learning,” in Cognitive Skills and Their Acquisition, J.R. Ander-
son (ed.), Lawrence Erlbaum Associates, Hillsdale, NJ, 1981.

Schenk, K. D., Vitalari, N. P., and Davis, K. S. “Differences
between Novice and Expert Systems Analysts: What Do We
Know and What Do We Do?,” Journal of Management Infor-
mation Systems (15), 1998, pp. 9-50.

Schmidt, R. A. Motor Control and Learning: A Behavioral Empha-
sis, Human Kinetics, Champaign, IL, 1988.

Sheetz, S. D., Irwin, G., Tegarden, D. P., Nelson, H. J., and
Monarchi, D. E. “Exploring the Difficulties of Learning Object-
Oriented Techniques,” Journal of Management Information
Systems (14:2) Fall 1997, pp. 103-131.

MIS Quarterly Vol. 31 No. 3/September 2007 469

Armstrong & Hardgrave/Transition to Object-Oriented Development

Shimp, T., Samiee, S., and Madden, T. “Countries and Their Pro-
ducts: A Cognitive Structure Perspective,” Journal of the Aca-
demy of Marketing Science (21:40), Fall 1993, pp. 323-330.

Shneiderman, B. Designing the User Interface: Strategies for
Effective Human-Computer Interaction, Addison-Wesley Pub-
lishers, Reading, MA, 1986.

Shneiderman, B. “Exploratory Experiments in Programmer Beha-
vior,” International Journal of Computer and Information
Sciences (5:2), 1976, pp. 123-143.

Shneiderman, B., and Mayer, R. “Syntactic Semantic Interactions
in Programmer Behavior: A Model and Experimental Results,”
International Journal of Computer and Information Sciences
(7:3), June 1979, pp. 219-239.

Sircar, S., Nerur, S., and Mahapatra, R. “Revolution or Evolution?
A Comparison of Object-Oriented and Structured Methods,” MIS
Quarterly (25:4), December 2001, pp. 457-471.

Soloway, E., and Ehrlich, K. “Empirical Studies of Programming
Knowledge,” IEEE Transactions on Software Engineering (10),
1984, pp. 595-6009.

Spohrer, J. C., and Soloway, E. “Novice Mistakes: Are the Folk
Wisdoms Correct?,” Communications of the ACM (29:7), July
1986, pp. 624-632.

Stasz, C., Shavelson, R., Cox, D., and Moore, C. “Field-
Independence and the Structuring of Knowledge in a Social
Studies Minicourse,” Journal of Educational Psychology (78),
1976, pp. 550-558.

Straub, D. W. “Validating Instruments in MIS Research,” MIS
Quarterly (13:2), June 1989, pp. 147-169.

Sumfleth, E. “Knowledge of Terms and Problem-Solving in
Chemistry,” International Journal of Science Education (10:1),
January 1988, pp. 45-60.

Tapscott, D., and Caston, A. “The New Promise of Information
Technology,” Ivey Business Journal (57:4), Summer 1993, pp.
51-61.

Underwood, B. J. “Interference and Forgetting,” Psychological
Review (64), 1957, pp. 49-60.

Vessey, 1., and Conger, S. A. “Requirements Specification:
Learning Object, Process, and Data Methodologies,” Communi-
cations of the ACM (37:5), May 1994, pp. 102-114.

Vitalari, N. P. “Knowledge as a Basis for Expertise in Systems
Analysis: An Empirical Study,” MIS Quarterly (9), 1985, pp.
221-240.

470 MIS Quarterly Vol. 31 No. 3/September 2007

Weick, K. E. “Theory Construction as Disciplined Imagination,”
Academy of Management Review, (14:4), 1989, 518-531.

Wiedenbeck, S. “Novice/Expert Differences in Programming Skill,”
International Journal of Man-Machine Studies (23:4), October
1985, pp. 383-390.

Wiedenbeck, S. “Organization of Programming Knowledge of
Novices and Experts,” Journal of the American Society for
Information Science (37:5) 1986, pp. 294-299.

Wittrock, M. C., and Cook, H. “Transfer of Prior Learning to
Verbal Instruction,” American Education Research Journal
(12:2), 1975, pp. 147-156.

Yourdon, E., Whitehead, K., Thomman, J., Oppel, K., and
Nevermann, P. Mainstream Objects: An Analysis and Design
Approach for Business, Yourdon Press, Upper Saddle River, NJ,
1995.

About the Authors

Deborah J. Armstrong is an assistant professor of Information
Systems in the College of Business at Florida State University. Dr.
Armstrong’s research interests cover a variety of issues at the
intersection of IS personnel and mental models involving the human
aspects of technology, change, learning, and cognition. Her research
has appeared in Journal of Management Information Systems,
Communications of the ACM, Sex Roles, and The DATA BASE for
Advances in Information Systems, among others.

Bill C. Hardgrave is the Edwin and Karlee Bradberry Chair in
Information Systems and Executive Director of the Information
Technology Research Institute in the Walton College of Business at
the University of Arkansas. His research on software development
(primarily people and process issues) has appeared in Journal of
Management Information Systems, Communications of the ACM,
1IEEE Software, IEEE Transactions on Sofiware Engineering, IEEE
Transactions on Engineering Management, The DATA BASE for
Advances in Information Systems, Information and Management,
and Educational and Psychological Measurement, among others.

Armstrong & Hardgrave/Transition to Object-Oriented Development

Appendix A

Survey Instrument

Section |

A concept that is 0 percent novel is one that was originally defined in traditional development (any approach used that is not OO) and continues
to hold the same meaning in OO development (borrowed concepts). A concept that is 100 percent novel is an OO concept that does not exist in
traditional development. Concepts that are between 0 and 100 percent novel are concepts that have an existing meaning in traditional
development, but now have a new and different meaning in the OO development context.

For example, if you know how to play tennis, but are learning to play racquetball, many of the concepts would be 0 percent novel. The concept
of hitting a ball with a racquet is 0 percent novel. You hit the ball with a racquet in both tennis and racquetball. In contrast, the concept of hitting
the ball off of a wall does not exist in tennis, so hitting a ball off the wall would be a 100 percent novel concept. The concept of keeping score would
be between 0 and 100 percent because you keep score in both tennis and racquetball but you do it differently.

Please indicate the degree of novelty for each of the concepts listed below by placing an X on the line by the corresponding percentage.

Polymorphism

0% novel 10% 20% 30% 40% 50% 60% 70% 80% 0% 100% nove!
Object

0% novel 10% 20% 30% 40% 50% 60% 70% 80% 0% 100% novel
Inheritance

0% novel 10% 20% 30% 40% 50% 60% 70% 80% 0% 100% nove!
Class

0% novel 10% 20% 30% 40% 50% 60% 70% 80% 0% 100% novel
Encapsulation

0% novel 10% 20% 30% 40% 50% 60% 70% 80% 0% 100% nove!
Attribute

0% novel 10% 20% 30% 40% 50% 60% 70% 80% 0% 100% novel
Method

0% novel 10% 20% 30% 40% 50% 60% 70% 80% 0% 100% nove!
Message Passing

0% novel 10% 20% 30% 40% 50% 60% 70% 80% 0% 100% novel
Abstraction

0% novel 10% 20% 30% 40% 50% 60% 70% 80% 0% 100% nove!

MIS Quarterly Vol. 31 No. 3/September 2007 471

Armstrong & Hardgrave/Transition to Object-Oriented Development

Section Il

Please circle the letter corresponding to the best answer for each question.

1.

472

If you extend a class you are
a. Allocating more memory to the class
b. Making the class more specific
c. Creating extra instances of the class
d. Creating a superclass

Abstraction is
a. The process of creating an object from a class
b. Cannot be modeled
c. Adding values to an object’s attributes
d. Ignoring what is not important for the job at hand

In terms of object oriented programming, the use of polymorphism means
a. That a client class does not need to be aware of the particular subclass that actually implements a method
b. That objects change class over time
c. That a single object is morphed into a number of database tables
d. That subclasses can override the methods of a parent class

You model an object’s characteristics by defining

a. Methods

b. Attributes
c. Subclasses
d. Procedures

means that an object has attributes and methods combined into one unit.
Inheritance
Encapsulation
Iteration
Association

ao oo

Every object must belong to at least one class.
a. True
b. False

In object-oriented systems inheritance
a. Shows how a class changes over time

b. Shows how messages are passed between classes
c. Isonly a programming technique to reduce the amount of code
d. Allows similarities and dissimilarities to be modeled clearly
refers to the way different object can respond in their own way to the same message.
a. Encapsulation
b. Inheritance
c. Polymorphism
d. Association
Aclass is

a. Different than an object because a class is an instance and an object is a category

b. The same as an object

c. Different than an object because a class is like an instance and an object is like an association
d. Different than an object because a class is a type of thing and an object is an instance of a thing

MIS Quarterly Vol. 31 No. 3/September 2007

20.

21.

Armstrong & Hardgrave/Transition to Object-Oriented Development

The process by which an object sends information to another object or asks the other object to invoke a method is known as

a. Method processing
b. Abstraction

c. Instantiation

d Extension

A class that allows a user of that class to access its variables only through the use of the class’s methods has incorporated the object-

oriented principle of
a. Polymorphism
b Encapsulation
c. Inheritance
d Extension

An object’s ability to decide which method to apply to itself depending on where it is in the hierarchy is called

a. Encapsulation
b. Cloning

c. Polymorphism
d. Early binding

Every class must have at least one object.
a. True
b. False

A method may return at most
a. Ovalues
b. 1 value
c. 2values
d. Any number of values

A class specifies the behavior of its instances.
a. True
b. False

Objects are aware of how other objects are implemented.
a. True
b. False

With regard to an auto, the driver doesn’t care how the engine runs, the mechanic doesn’t care about the inner workings of the battery,

but the battery manufacturer does. This is an example of
a. Polymorphism
b. Message Passing
c. Method
d. Abstraction
Objects interact by sending messages to one another.

a. True
b. False

Methods are always associated with a specific object.
a. True
b. False

There is no way for an object to access the data of methods in another object.

a. True
b. False

Each object of a class will have the same values for its attributes.
a. True
b. False

MIS Quarterly Vol. 31 No. 3/September 2007

473

Armstrong & Hardgrave/Transition to Object-Oriented Development

22. If the Rental Equipment class is responsible for the processing required when it “rents itself,” then the processing would be a(n)
a. message
b. method
c. object
d. class
23. You want to move an automated vehicle (AV104) to a new location (binB7). To accomplish this, you would

a. Send a message to vehicle AV104 and ask it to move to binB7

b. Send a method to vehicle AV104 and ask it to move to binB7

c. Have the AV class relocate to binB7

d. Change the attribute of the vehicle to show the new location as binB7

24. For an object named Product, which of the following is a likely attribute?
a. Description
b. SetDescription
c. AddToOrder
d. GetPrice

25. Abstraction is the process of focusing on those features that are essential for the task at hand and ignoring those that are not.

a. True
b. False
26. According to the concept of , one class of objects can take on characteristics of another class and extend them.
a. Encapsulation
b. Lineage
c. Association
d. Inheritance
27. Which statement is true concerning objects?

a. Objects are a collection of competing things that can be classified as a specific type
b. Objects are typically complex

c. Objects cannot be reused in other systems

d. Objects are self-contained

Section lll

Think back to when you first learned the concepts listed below. Please indicate how easy or difficult it was for you to learn each concept by circling
the number that indicates the level of learning difficulty.

Very Moderately Slightly Slightly Moderately Very

Easy Easy Easy Neutral Difficult Difficult Difficult
Object 1 2 3 4 5) 6 7
Message Passing 1 2 3 4 5 6 7
Abstraction 1 2 3 4 5) 6 7
Method 1 2 3 4 5 6 7
Polymorphism 1 2 3 4 5 6 7
Attribute 1 2 3 4 5 6 7
Inheritance 1 2 3 4 5 6 7
Encapsulation 1 2 3 4 5 6 7
Class 1 2 3 4 5) 6 7

474 MIS Quarterly Vol. 31 No. 3/September 2007

Copyright of MIS Quarterly is the property of MIS Quarterly & The Society for Information
Management and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print, download, or
email articles for individual use.

