Distribution Reconstruction

COMP 3/4704: Data Privacy




1 Background Knowledge

» A person’s salary is between $0 and $10,000 (integer)

» 1% of the population has no earning (zero salary)
Pr(S=0) = 1% = 0.01 (S is salary)

» Every other salary number is equally likely
Pr(S=k) = (I - 0.01) / 10000 = 0.000099

» What is the chance that Bob has no earning!?




2 Privacy Risk in Simple Perturbation

» Say a salary value S=k is changed as follows

R, : k stays the same with 20% chance, or changed to another
number with 80% chance

» The method reports that Bob’s salary is zero

» What is the chance that Bob has no earning?

previously, it was |%
it is now 96.1%
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3 Perturbed Data

» Consider the numeric attribute X

a random variable with values coming according to some
probability density function f,

» Say values of the attribute X have been modified by
adding numbers from another random variable Y with
density function f,

we call the new variable W
W=X+Y

» How can we estimate fy using fy,y and f,?
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say one value of Wis w, (= x.ty,)
estimated CDF
Pr(X <) =Fy () = [ f(z| X +Y =w))dz

_ ij+y(w,. X =9/,
= 4
o fX+Y(wi)

=j Fro WX =2 £,()
_ooffxw(wi | X =h)f,(h)dh

dz

ffX+Y(wi | X =2)fy(2)dz

ffX+Y(Wi | X =2)fy(2)dz

[ £,0w, =2 f (2)dz

[ £y, -2 f (2)dz
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Using Bayes Rule

since we have multiple
observed values (say n of
them), we take the average in
the estimated CDF

1 & ffy(Wi—Z)fX(Z)dZ

Fo(t)==)=

P v, =2 £ (2)dz
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Estimated density function

» The estimated probability density function is the

derivative of the estimated cumulative distribution
function

| 1 n | —
Sx (D) —;E A OA
- ffY(wi —2) fx(2)dz

» We are still stuck because to compute this we need f,

L4-5

and f, both

we do know f, but not f,




6 Reconstruction Algorithm

» lterative algorithm

assume f, = uniform distribution
compute

li fyw, =) f, (1)
" ffY(wi —2) fx(2)dz

fx (D)<

repeat (2) until difference in value is too small

e.g. | % of threshold of some statistical test

»  We cannot compute fy for all possible values of t
(infinite of them)

» To make step (2) simpler we will divide the domain of
X into intervals
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7 Using Intervals

» Divide the domain of X into intervals
I :[lu,], ... I, [l u,]
» Let mp,, mp,, ..., mp, be the midpoints of these
intervals

» We assume that

the distance between any two points is equal to the distance
between the midpoints of the intervals they belong to

the value of the density function at a point is equal to the

average of the density function values in the interval to which
the point belongs
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. 1 .
fX(t) =;E _ fy(Wl ZL)J[X(l‘)
- ffY(Wi —2) fx(2)dz

m].]
I[.]
Lr

gx(1))

n

Using Intervals

(0= L3 pbed =g A
i=1 EfY(m[wi] - mpr)gx (]r)Lr

r=1

= midpoint cj‘the interval on which point lies

= interval on which point lies

= ]ength er—th interval = u_— I

= average qf fX in an interval I

= fler(Z)dZ/Lr

estimation of g
(6= [, fu@ds L, A
E Jy(mlw,]-mp,)g, ()

- Efy(m[w 1-mp,)gx (1)L,
- /




9 Using Intervals
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» Therefore we can estimate the probability for X being in
an interval |,

Pr(X€l)=g,()L,

L

t

=li fY(m[Wi]_mpt)gX(It)

TN £ (mlw,] = mp, gy ()L,

1 i fy(m[w.]-mp,)Pr(X €1)

- m

"3 f 1P

» We use this in step (2) of the iterative algorithm




1 O Reconstruction Algorithm

» You have intervals |, (t=1...m) and want to estimate the
probability that the attribute’s value is in these intervals
» lterative algorithm
assume uniform distribution: Pro(X € 1) = I/m

let iter=1; compute (t=1...m)

E fY(m[w] mpt)Prter 1(XEI)

=l zfy(m[w ]-mp,)Pr,, (XEI)

increment iter and repeat (2)

(XEI )=

lter

until difference in value is too small (1% of threshold of some
statistical test), or

some maximum number of iterations

L4-10




