
COMP 4337/9337 - Securing Wireless Networks

Implementation Assignment (V1.0)

April 28, 2016

Change Log a. Version 1.0 released on April 29th, 2016

Due Date: 30th May 2016, 11:59 pm
Total Marks: 20 (towards 45 marks for lab/project component in the
course outline)

1 Learning Objectives:

On completing this assignment you will gain sufficient expertise in the fol-
lowing skills:

• Understanding and developing security protocols.

• Reading and understanding standard documents for security such as
RFCs.

2 General Instructions

This document contains the project specifications for COMP 4337/9337 -
Securing Wireless Networks. Please note the followings:

• Equal marking: It is assumed that all group members contribute
equally to a submitted work. Therefore, the project marks will be
applied to all group members equally.

• Grade distributions: This project contributes to a maximum of 20
marks towards your final grade. Your marks are based on the quality

1

of your submitted work. We expect that you work in a group of two.
If you are not able to find a partner, please contact LIC as soon as
possible (after you have tried via openlearning). By default we will
assume that you have retained your research project group unless no-
tified otherwise by 5 pm, 4th May. Also, please note that each group
can only submit one project.

• Alternate Project: Groups can also suggest an alternate project.
They must send a brief description (i.e., what will be built, why is
this worthwhile and how it relates to this subject, and what will be
demonstrated) to the LIC via email latest by 3 May, 2016. LIC will
approve this or seek further clarification during the lecture on May 4,
2016. The project must be of similar or higher complexity in building
a secure system over wired/wireless network. You can use publicly
available programming modules (but identify them in your report and
demo). Project should not duplicate work done in another course e.g.
3441

• Programming Language Support: We recommend that you use Python
2.7 for this project. You may choose to work in other programming
languages as libraries may be availabe publicly. However, please note
that there will be no support from our side if your choose another
programming languages.

• Consultation and queries support: Please discuss general questions
via openlearning. We will keep an eye. If you have specific ques-
tions, please contact Dr Hailun Tan (thailun@cse.unsw.edu.au) as he
will be in-charge of this assignment. He will also advertise a regular
consultation slot.

3 Project Scope

We will implement a simplified version of SSL/TLS (miniSSL) and a sim-
plified application-layer protocol (miniGet) in this project. The goal is to
get a better understanding of the SSL/TLS protocols.

miniSSL and miniGET

An miniSSL is a barebone version of Secure Socket Layer (SSL). An miniSSL
includes a simplified SSL handshake, which leads for user authentication.

2

A session key need to be distributed securely for data encryption and in-
tegrity check (by HMAC) in miniGet later. You are expected to use RSA
and implement the client authentication (advanced requirement: mutual
authentication).

An miniGET is simply a GET operation sent from client to server after
the miniSSL hand-shake. The server sends the requested file, encrypted and
HMACed with the session key. The session key for data encryption and
integrity check was established during the miniSSL handshake. We always
use the off-the-shelf cryptographic algorithms, AES 128-bit encryption and
SHA1-based HMAC, for data encryption and integrity check. Once the file
is delivered, both client and server would terminate the session without any
further notifications.

Protocol flow

The simplified protocol you are going to implement is shown as follows. C
denotes as client, S denotes as server. We have an miniSSL-CA.

We start with the miniSSL handshake. Note that we group the different
message types of SSL/TLS in new, custom ones. In the following, the comma
operator indicates the border between message fields, and the | operator
indicates concatenation of two (bit) strings.

1. C chooses a nonce nc of length 28 bytes. It chooses the cipher suite
to be 128-bit AES encryption and SHA1 as the HMAC function. It
is denoted as a string AES-HMAC. The type of the first message is
ClientInit. C sends this to S:

C → S : ClientInit, nc, AES-HMAC

2. Upon receiving this message, S chooses a random nonce ns of length
28 bytes. It acknowledges the client’s cipher choice and also sends a
certificate. It can add an optional request for the client to authenticate
with a certificate by sending the CertRequest string:
S → C : ServerInit, ns, AES-HMAC, Certs [, CertReq]

3. C verifies that the unexpired server certificate was issued by the miniSSL-
CA (checking the signature, with the certificates in its root store) and
whether the common name matches with the expected one. It extracts
S’s public key. It generates a pre-master secret p as a random value
with 46 bytes in length. From this, it derives two session keys k1 and k2
as k1=HMAC-SHA1(p, nc|ns|enc) and k2=HMAC-SHA1(p, nc|ns|mac), with

3

enc,mac being the binary strings 00000000 and 11111111. Finally, it
computes an HMAC over all messages up to this point in the following
way:
mc=HMAC-SHA1(k2,ClientInit— nc—AES-HMAC—ServerInit—ns—Certs
[|CertReq])

C sends the following to the server (note the optional client certificate).
E means encryption with the respective public key:
C → S : ClientKex, ES(p),mc[, CertC, SigC(ns|ES(p))]

SigC(ns) is C’s signature on the server’s nonce.

4. The server, upon receiving this message, also verifies that CertC was
issued by miniSSL-CA (see above) and that the certificate is not ex-
pired. There is no need to check the Common Name. It computes k1,
k2 and verifies that mc has the correct value. It computes an HMAC
over all messages up to this point in the following way:
ms=HMAC-SHA1(k2,ClientKex—ES(p)|mc|[, CertC]).
It sends this to C:
S → C : ms

5. C verifies ms. The handshake is complete. C will now initiate miniGET.
This protocol uses k1 for encryption and k2 for HMACs.

Compulsory Requirements

The following requirements are compulsory for your program.

• Your implementation must allow the protocol to run between client
and server on different hosts, with different IP addresses. Therefore,
TCP/IP sockets should be specified readily in your program.

• The miniSSL handshake should be implemented with the establish-
ments of two session keys, one for AES data encryption, the other for
HMAC integrity check.

• Your program should be able to accommodate multiple sessions, i.e.
it must be possible to have two clients communicating with one server
at the same time.

• Client and server must record the state of the current handshake, i.e.,
session management. All cryptographic information in a given protocol
(nonces, keys, etc.) must be stored internally! There is an immediate

4

effect that client and server cannot be confused when a third party
starts sending them well-formed messages - they should be able to
reject these as the state information is incorrect.

• Your client must verify that the server certificate has been issued from
the minissl CA, carries the expected Common Name (it is in the cer-
tificate), and is not expired. No other checks are necessary. It must
use the public key found in the server certificate.

• Your server must support two modes: Simple and ClientAuth. In
Simple, the client does not need to authenticate to the server. In
ClientAuth, the server verifies that the client presents a valid certificate
from the minissl CA and this certificate is not expired.

• After the handshake, the client must download the text file payload.txt
from the server. Generate this file yourself. This messages must be
encrypted with the session key, with the respective HMAC. In Clien-
tAuth mode, the server could only process the received message if
the client has presented the correct certificate. You have liberty of
the design and implementations on your own session termination sig-
nals in miniGet . We suggest you implement a simple GET and have
server and client(s) simply terminate the connection when the file is
successfully received.

• By checking the SHA-1 checksum, you must prove that both client
and server have identical copies of payload.txt.

• If either the server or client presents an invalid certificate, the other
side must terminate the connection (i.e., close the socket). There are
rogue certificates in the attached project package. Use them to verify
that you do not accidentally accept the invalid certificates.

• Your program must handle all the exceptions well without crashing
if the packet is misconfigured. In addition, client and server must
terminate the session successfully if it happened.

Program Formats

The client should be started as follows:

./client.py dst ip dst port clientcert clientprivkey

5

The server must be started like this:

./server.py listen port servercert serverprivkey {SimpleAuth,
ClientAuth} payload.txt

i.e. server and client read in their certificates and private keys from the
provided file.

Design Liberties Except the above compulsory requirements, you have
liberties of implementing these functions in various ways. Refer to RFC4346
for potential options. In particular, you are free to choose:

• Protocol field format and field delimiters

• Appropriate encodings for message types and fixed strings, if needed

• The way you do RSA encryption (e.g., padding). Find a way to deal
with the problem of plaintexts that are too long.

• You may choose a higher key length, but then you need to choose the
string indicating that.

• Blocking or non-blocking sockets

• Details of the file transfer

• We suggest you use ports > 1024 to avoid the administrative rights

Evaluation factors

The following factors will be evaluated for this project.

• Correctness of programs.

• Completion of correct handshake and correct file transmissions.

• The completion of the compulsory requirements .

• Well-commented codes.

References

Sockets Here are some readings on how to use sockets in Python: http:

//docs.python.org/2/howto/sockets.html.

6

http://docs.python.org/2/howto/sockets.html
http://docs.python.org/2/howto/sockets.html

Libraries Under Python, we found that the use of three libraries yields
best results (this tells you a lot about crypto for Python):

• pycrypto for simple RSA, AES and HMAC operations, https://www.
dlitz.net/software/pycrypto/api/current/

• m2crypto for direct verification of a certificate, http://www.heikkitoivonen.
net/m2crypto/api/

• pyopenssl for reading X.509 fields, http://packages.python.org/

pyOpenSSL/

Under a Debian or Ubuntu, you can install them on by doing a sudo

apt-get install python-crypto python-m2crypto python-openssl.
As having to use three crypto libs is awkward, we have coded up some

help for you in keyutils.py. You’ll mostly only need PyCrypto.

Submisson Instructions (TBA)

The code is to be submitted by 30th of May, 2016, 11:59 PM. Submission
instruction will be advised a week before the deadline. You will need to
demonstrate your implementation during the lab session on 1st of June,
2016. There will be a link to submit your report and codes.

Demonstration Schedule (TBA)

Late Submission Penalty:

Late penalty will be applied as follows:

• 1 day after deadline: 10% reduction

• 2 days after deadline: 20% reduction

• 3 or more days late: NOT accepted

NOTE: The above penalty is applied to your final total. For example, if you
submit your assignment 1 day late and your score on the assignment is 20,
then your final mark will be 20 2 (10

7

https://www.dlitz.net/software/pycrypto/api/current/
https://www.dlitz.net/software/pycrypto/api/current/
http://www.heikkitoivonen.net/m2crypto/api/
http://www.heikkitoivonen.net/m2crypto/api/
http://packages.python.org/pyOpenSSL/
http://packages.python.org/pyOpenSSL/

Plagiarism:

You are to write all of the code for this assignment yourself. All source
codes are subject to strict checks for plagiarism, via highly sophisticated
plagiarism detection software. These checks may include comparison with
available code from Internet sites and assignments from previous semesters.
In addition, each submission will be checked against all other submissions of
the current semester. Please note that we take this matter quite seriously.
The LIC will decide on appropriate penalty for detected cases of plagiarism.
The most likely penalty would be to reduce the assignment mark to ZERO
and reported to school plagiarism register. We are aware that a lot of
learning takes place in student conversations, and don’t wish to discourage
those. However, it is important, for both those helping others and those
being helped, not to provide/accept any programming language code in
writing, as this is apt to be used exactly as is, and lead to plagiarism penalties
for both the supplier and the copier of the codes. Write something on a piece
of paper, by all means, but tear it up/take it away when the discussion is
over.

8

	Learning Objectives:
	General Instructions
	Project Scope

