T2/2012 SEV222: Hydraulics and Hydrology

Assignment 2

Submission due date: Wednesday, 19th September for both on and off campus students

Notes:

- (i) All calculation steps should be clearly shown in your answers
- (ii) *No electronic submissions* will be accepted

Answer all questions

- 1. Determine the maximum depth in a 5-m wide rectangular channel if the flow is to be supercritical with a flow rate of $Q = 40 \text{ m}^3/\text{s}$. What is the critical slope corresponding to the above flow rate? (n = 0.011)
- 2. A flow of 28 m³s⁻¹ occurs in an earth-lined canal having a base width of 3 m, side slopes of 1(vertical) to 2 (horizontal) and the Manning's n value of 0.022. Calculate the critical depth and critical slope.

3.

- a. A hydraulic jump occurs in a rectangular open channel. The water depths before and after the jump are 0.6 m and 1.5 m, respectively. Calculate the critical depth.
- b. A hydraulic jump occurs in a rectangular channel 3 m wide having a discharge of 9 m³s⁻¹. The approach depth is 0.75 m. What is the downstream depth, and what fraction of the upstream energy is dissipated in the jump?
- 4. Water enters a very wide rectangular channel (Manning's n = 0.0149) at a velocity of 12.2 ms⁻¹ and a depth of 0.61 m. An H3 curve forms downstream and the water jumps to a depth of 2.4 m some distance downstream. Find the distance downstream to the location of the hydraulic jump.

- 5. A long wide rectangular channel carries a steady flow rate of 35 m²s⁻¹ (flow per unit width) and passes through an abrupt change in slope from 0.005 (upstream of the change) to 0.003 (downstream). Manning's n for the channel is 0.013. Is there a hydraulic jump in the channel and if so where? Describe the water surface profiles at the various parts of the channel.
- 6. Question from Hydrology section

Note:

(i) The numerical values for the variables in the questions are based on your ID number and you must use the appropriate values for answering the questions. *Failure to do so will result in no marks being awarded to those questions.*

The following variable is used in the questions: **R**

If the last two digits of your ID is greater than or equal to 45 then R = the last two digits

If the last two digits of your ID is less than 45, then R = 45 + the last two digits

Example: If the ID = 230675467, then R = 67

If the ID = 230675134, then R = 45 + 34 = 79

Note that your R value can only be between 45 and 99 (both inclusive)

6	(a)
---	-----

Assuming that the following flood data follows a Gumbel distribution, plot the data on a Gumbel probability scale and fit a linear trend to your plot. Determine the Flood magnitude of ARI (return period) equal to **R** years from your fitted linear trend and compare with that from the equation; ($x = \beta + \alpha$.y)

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
Peak flow	85.5	240.8	186.8	160.9	126.6	140.7	418.7	16.5	98.0	29.2
in m3/s										

2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
100.7	18.4	175.4	314.9	22.2	262.2	131.7	13.7	11.7	3.2	142.8

$$AEP = (m - 0.4) / (N + 0.2)$$
$$y = -\ln[-\ln(1 - AEP)]$$
$$\alpha = S.\sqrt{6} / \pi$$
$$\beta = \overline{x} - 0.5772\alpha$$
$$x = \beta + \alpha. y$$

6 (b)

Flood peaks of a river for 5-yr and 100-yr return periods are given as (100 + R) and (400 + R) m³/s respectively:

- i. Calculate mean (\overline{X}) and standard deviation (S) of the river floods assuming that Gumbel distribution fits the data
- ii. Using Normal distribution calculate 50 and 100 year return period flood peaks,
- iii. Calculate 50 and 100 year return period flood peaks using 2parameter Log-Normal distribution. The mean (\overline{Y}), standard deviation (S_y) and skewness coefficient (g_y) of the logarithms (base 10) of the annual flood peaks are given as follows:

 $\overline{Y} = 2 + R/1000$, S_y = 0.4 + R/1000, g_y = -(R/100)

 iv. For statistics of the log transformed data in (iii), calculate flood peak for 50 and 100 year return periods using the Log-Pearson distribution