Lab 1 M2A3: Lab: Working with Various Instructions Using DEBUG

1. Introduction
The purpose of this experiment is to introduce you to a powerful 80x86 assembly/machine language utility called DEBUG.
Preparing Your DEBUG Environment
If you have an older version of Windows (95, or 98) or Windows XP 32-bit, or Windows Vista 32-bit, or Windows 7 32-bit, then the DEBUG utility program is built into the operating system. You can prove this to yourself by opening a Command Prompt window (Start, Run, type debug into the run field, and click OK, or just click the Command Prompt icon). Once inside the Command Prompt window, type debug and press Enter. If you get an error then DEBUG does not exist on your Windows system.
[image: image1.jpg]Microsoft Office Word 2007 »

WinZip 1.2 »

Command Prompt

Calcutator

A7 ticky Notes

% Snipping Tool
y j Paint

> AllPrograms

Search programs and fies F)

Start Menu showing Command Prompt icon
If you have 64-bit versions of Windows XP, Vista, 7, or 8, then you need to install some special software to create a DEBUG environment. Read and follow the instructions in the following document:
· debughelp2.doc
The special software you need (DosBox) as well as the actual DEBUG program are saved in the following ZIP file:

· debugfix.zip
The debughelp2.doc document explains how to unzip the files and get DEBUG running through DosBox.
Procedure
1. Read Appendix D, pages 560 through 575. Perform all the example DEBUG command exercises that are presented.
2. Here is the DEBUG program you need to enter and execute:
a
mov ax,0
mov bx,1234
mov cx,5678
mov dx,9abc
and ax,bx
or ax,cx
xor ax,dx
not ax

r
t 8
q
3. Run DEBUG and enter the program and commands line by line. The blank line after the not ax instruction is needed to get out of the “a” command.

4. Examine the DEBUG output. The final value in AX should be 333B. This would be a good time to do an Alt Print Screen to capture a screen shot of the DEBUG window to paste into your lab writeup.
5. Quit DEBUG and then run it again.
6. After entering the “a” command, change the first instruction from
mov ax,0
to
mov ax,????
where ???? is your 4-digit birth date. For example, if you were born on July 15, your instruction would be mov ax,0715
Then enter the rest of the instructions and commands.
7. Use DEBUG to run the modified program. Do another Alt Print Screen to grab the new DEBUG results for your lab writeup.
ELEC202 Microprocesors
Running DEBUG in Microsoft Vista, Windows 7, and Windows 8
Microsoft has chosen to remove the DEBUG utility from several Windows 64-bit operating systems.

However, it is still possible to run DEBUG after following a simple process.

First, you need to install a utility program called DOSBox.

Second, you install a copy of DEBUG that runs inside DOSBox.

Installation

1. Download the ZIP file DEBUGFIX and open it. It contains two files as shown:

[image: image2.png][<]®)

1 » Computer » LDUR(E) » debugiZP » debug

&

Search debug »

Organize v Bxtract allfiles - 3 e
¢ Favorites 4 Name . Type Compressed size Password ...
B Desktop 7] DEBUG.EXE Application KB No
6 Downlosds [DOSBo T4-win3-installerexe Application 140268 No

B Recent Places

Documents
o) Music

& Pictures
B8 Videos

8 Computer
& LocalDisk (C)
- LEXAR ()

REY

1 Recveten

B weddng |- @ i

I 2items

When you extract the files, just choose C:\ as the destination folder and both files will automatically be saved into the C:\DEBUG folder.

2. Run the DOSBox0.74-win32-installer.exe program. It will install DOSBox on your Windows Vista , 7, or 8 computer.
3. Run the DOSBox utility by double-clicking its desktop icon:

[image: image3.png]B
bos
[o23

You will see the following screen:

[image: image4.png]Uelcome to DOSBox v0.74

For a short introduction for new users type: INTRO
For supported shell commands type: HELP

To adjust the emulated CPU speed, use ctrl-Fil and ctrl-Fiz.
To activate the keymapper ctrl-Fi.
For more information read the README file in the DOSBox directory.

HAUE FUNY
The DOSBox Team http://usas.dosbox.com

\>SET BLASTER=AZ20 17 D1 H5 T6

N>_

4. Mount the DEBUG folder by typing mount c c:\debug and pressing Enter.

Important Note: If you get an error and you typed the mount c c:\debug command in correctly, you may not have extracted the ZIP files correctly. For your instructor to be able to assist you, you will need to do a screen shot showing the files in the DEBUG folder.
FYI, there is a tutorial on the DosBox website if you want to take a deeper look. Visit www.dosbox.com for more information.

[image: image5.png]Uelcome to DOSBox v0.74

For a short introduction for new users type: INTRO
For supported shell commands type: HELP

To adjust the emulated CPU speed, use ctrl-Fil and ctrl-Fiz.
To activate the keymapper ctrl-Fi.
For more information read the README file in the DOSBox directory.

HAUE FUNY
The DOSBox Team http://usas.dosbox.com

J2:\>SET BLASTER=A220 17 D1 H5 T6

z:\>mount © cindebug
orive C is mounted as local directory

2

5. Switch to drive C by typing c: and pressing Enter:

[image: image6.png]Uelcome to DOSBox v0.74

For a short introduction for new users type: INTRO
For supported shell commands type: HELP

To adjust the emulated CPU speed, use ctrl-Fil and ctrl-Fiz.
To activate the keymapper ctrl-Fi.
For more information read the README file in the DOSBox directory.

HAUE FUNY
The DOSBox Team http://usas.dosbox.com

J2:\>SET BLASTER=A220 17 D1 H5 T6

z:\>mount © cindebug
orive C is mounted as local directory

2N

o>

6. Run DEBUG by typing debug and pressing Enter. Here you can see the results of DEBUG’s r command:
[image: image7.png]Uelcome to DOSBox vO.74

For a short introduction for new users type: INTRO
For supported shell commands type: HELP

To adjust the emulated CPU speed, use ctrl-Fil and ctrl-Fiz.
To activate the keymapper ctrl-Fi.
For more information read the README file in the DOSBox directory.

HAUE FUNY
The DOSBox Team http://usas.dosbox.com

J2:\>SET BLASTER=A220 17 D1 H5 T6

Jz: \omount ¢ ci\debug
prive C is mounted as local directory ciNdebugh

AX-=0000 BX-0000 CX-0000 DX-0000 SP=GOFD BP=0000 SI-0000 DI=0000
[DS=073F ES=073F SS-073F CS=073F IP=0160 NU UP EI PL NZ NA PO NC
jov3r :0100 ADD [BX+S11,AL DS:0000=CD

Now, just type commands into DEBUG one by one.

For example, here is the short program from Module 2 Lab 2A:
a

mov ax,0

mov bx,1234

mov cx,5678

mov dx,9abc

and ax,bx

or ax,cx

xor ax,dx

not ax

r

t 8

q

Type each line as shown and press Enter at the end of each line. The blank line after the not ax instruction is needed to get DEBUG out of the “a” command.

Here is the DOSBox DEBUG session using these commands:
[image: image8.png]z: omount ¢ c:ndebug
prive C is mounted as local directory cindebugh

mov ax,0
mou bx,1234
mov cx,5678
mov dx,9abe
and ax,bx
O10E or ax,cx
10110 xor ax,dx
0112 not ax
0114

(X=0000 BX-0000 CX-0000 DX-0000 SP=00FD BP=0000 SI=0000 DI=0000
073F ES=073F SS=073F CS=073F IP=0160 NU UP EI PL NZ Na PO NC
073F :0100 BEOGOO MU AX,0000

Now just the t 8 and q commands are left:

[image: image9.png]073F ES-073F
073F :0109 BABCIA

BX=1234
DS=073F ES=073F
073F :010C 21D8

BX=1234

'3F:010E 09C8

678 BX=1234

=073F ES=073F

3F:0110 3100

CC4 BX=1234

073F ES=073F
3F:0112 F7DO

073F :0114

3F1P-0163
DX, 9ABC

ABC SP=GOFD
SS=073F CS=073F IP=016C
AND AX,BX

CX=5678 DX=9ABC SP=00FD
SS=073F CS=073F IP=016E

SS=073F CS=073F IP=0110
AX,DX

BC SP=00FD
3F IP=0112
ax

BC SP=00FD
3F IP=0114
[BX+S11,AL

NU'UP EI PL NZ NA PO NC

BP=0000 SI=0000 DI=0000
NU UP EI PL NZ NA PO NC

BP=0000 SI=0000 DI=0000
NU UP EI PL ZR NA PE NC

BP=0000 SI=0000 DI=0000
NU UP EI PL NZ NA PE NC

BP=0000 SI=0000 DI=0000
NU UP EI NG NZ NA PO NC

BP=0000 SI=0000 DI=0000
NU UP EI NG NZ NA PO NC
DS:1234-00

You can always grab a screen shot of the DOSBox DEBUG window by pressing Alt Print Screen and then pasting from the clipboard into your lab document.

Here are all the DEBUG programs from the various labs for your reference:

First program from Module 3 Lab 3A
a

mov dx,1

mov ax,6b48

mov bx,00ba

div bx

mov bl,3c

div bl

r

t 6

q

Second program from Module 3 Lab 3A:

a 200

db 5

db 8

db 4

db 7

db 6

a 100

mov si,200

mov al,[si]

mov ah,0

mov bh,0

mov bl,[si+1]

add ax,bx

mov bl,[si+2]

add ax,bx

mov bl,[si+3]

add ax,bx

mov bl,[si+4]

add ax,bx

mov bl,5

div bl

r

t 0e

q

Third program from Module 3 Lab 3A:

a

mov al,20

cmp al,10

cmp al,20

r

t 3

q

Fourth program from Module 3 Lab 3A:

a

mov al,90

cmp al,80

cmp al,a0

r

t 3

q

Notes:
· In all of these programs, remember that the blank line is needed to get out of the “a” command and be able to begin entering other DEBUG commands, such as “r” or “t” or whatever.
· Use Alt Print Screen to grab a screenshot of the DEBUG command window so you can paste your results into your lab writeup. You may want to do this before using the “q” command to quit DEBUG.

LAB 2 M2A4: Lab: Assembling and Linking

1. Introduction
The purpose of this experiment is to setup the MASM assembler and linker. This will allow you to write assembly language source files and create executable code, such as .EXE and .COM files.

Procedure
1. Download the ZIPped MASM file: MASM6.EXE (4.6 MB)
2. This program is self-extracting. When you run it, you will see the following dialog box:

[image: image10.png]WinZip Self-Extractor - masmb.exe

To i al flesin masmé exe o he specifed =
folder press the Lz buton. =

Unip to folder: Flun WinZip

N Bowse Cose

¥ Qverwit fis withaut prompling
- Fomene About

Help

NOT LICENSED FOR DISTRIBLITION OF ANY KIND.

The default drive is C:. You may change this, but do not enter a directory name. The files end up in a directory called MASM611 automatically. So, if you just click Unzip without doing anything else, the files will be unzipped to
C:\MASM611.

3. You will do all your work with MASM in the MASM611\BIN folder. This means you will create, edit, and save your .ASM files in the MASM611\BIN folder. You will run the ML assembler and linker from the MASM611\BIN folder. Your LST files will be saved by ML in the MASM611\BIN folder as well.

Finally, you will run your .EXE file from the MASM611\BIN folder as well.

Important Note: If you are running a 64-bit version of Windows, you will need

to use DosBox to run the ML program. The initial command will be

mount c c:\masm611\bin
4. Download test.asm .

You may need to right-click and choose Save target as.. to save it. Save it in the MASM611\BIN folder.

5. Open a DOS window and navigate to MASM611\BIN where TEST.ASM is stored. In the DOS command window, enter:

CD \MASM611\BIN. On 64-bit Windows, start DosBox and duplicate the commands shown in the two figures provided here.

6. Enter the following command to assemble TEST.ASM:

ML /Fl TEST.ASM
This will create TEST.LST (the list file), and TEST.EXE (the executable code). Important: After the /F is a little l, not the number 1. If you use a little F or a big L you will get an error. The LST and EXE files will be in the MASM611\BIN folder.

7. Run the TEST.EXE program to verify it has been created. Include a copy of the LST file in your lab report. Refer to the following figures to see how TEST.ASM is assembled and executed.

[image: image11.jpg]For a short introduction for new users type: INTRO
HELP

For supported shell commands type:
To adjust the emulated CPU speed, use ctrl-Fil and ctrl-Fiz.

To activate the keymapper ctrl-F1.

For more information read the README file in the DOSBox directory.

HAUE FUN?
The DOSBox Team http://uaas.dosbox.com

[Z:\>SET BLASTER=A220 17 D1 H5 T6

Z\omount © ¢
i © s momnte a tanky directory ci\masmb11Nbin\

Zioe:

[C:\xdir test.x

Directory of Cix.
ST ASM a2 11 03-2013 10:23

1 File(s)

0 Dir(s) 262,111,] Hgtes “free.

c:>

Caption: DosBox window showing initial commands.
[image: image12.jpg]5]

irectory of C:N.
ST ASh 325 11-03-2013 10:23

1 File(s) 325 Bytes.

© Dir(s) 262,111,744 Bytes free.

[c:voml /F1 test.asm
Microsoft (R) Macro Assembler Uersion 6.11
(Copyright (C) Microsoft Corp 1981-1993. All rights reserved.

Assembling: test.asm

Microsoft (R) Segmented Executable Linker Uersion 5.31.009 Jul 13 1992
(Copyright (C) Microsoft Corp 1984-1992. All rights reserved.

(Ob ject Modules [.obj

test.obj
“test .exe”
L

LINK : warning L4621: no stack segment

Cinstest
Way to go... MASM works?

>,

Caption: DosBox window showing assembling and execution of TEST.ASM
8. Choose three programs from the book (they are saved in book-cd-files.zip) and create EXE files from them. Execute the programs and describe the results

. Download copy of test.asm
;Program TEST.ASM: Testing the MASM installation.

;

 .MODEL SMALL

 .DATA

MSG DB 'Way to go... MASM works!',13,10,'$'

 .CODE

 .STARTUP

 LEA DX,MSG ;set up pointer to greeting

 MOV AH,9 ;display string function

 INT 21H ;DOS call

 .EXIT

 END

 LAW 3 M3A3:Lab: Calculations and Comparisons

If viewing this through the Assignment tool, click the title above to go to the Submissions area
Introduction
The purpose of this experiment is to see how typical mathematical calculations, as well as numeric and logical comparisons, are performed
Procedure
1. The sun is 93,000,000 miles from the Earth The speed of light is 186,000 miles/second. How long does it take a ray of light to reach the Earth? The correct answer is 8 minutes, 20 seconds.
Open a command window (or DosBox), start DEBUG, and enter these commands
a
movdx,1
movax,6b48
movbx,00ba
divbx
movbl,3c
divbl

r
t6
q

1…Remember that a screen shot showing your DEBUG results should be included in your lab report What is the final value in the AX register? Does it represent some combination of 8 and 20? Hint: Remember that DEBUG only works with hexadecimal numbers
2…. Explain how the calculations were performed in SUN.SCR. For example, were the numbers 93,000,000 and 186,000 represented anywhere? If not, why not?

3. Open a command window (or DosBox), start DEBUG, and enter the following commands. What is the final value in AL? Explain why this is correct.
200
db5
db8
db4
db7
db6

a100
movsi,200
moval,[si]
movah,0
movbh,0
movbl,[si+1]
addax,bx
movbl,[si+2]
addax,bx
movbl,[si+3]
addax,bx
movbl,[si+4]
addax,bx
movbl,5
divbl

r
t0e
q

4. Open a command window (or DosBox), start DEBUG, and enter the following commands.

a
moval,20
cmpal,10
cmpal,20

r
t3
q

Discuss the relationship between the instructions and the results indicated by the flags..

5. Repeat step 4 using these commands

a
moval,90
cmpal,80
cmpal,a0
r
t3
q

6. Download the program COMPARES.ASM. Assemble, link, and run.

7….Choose four additional types of conditional jump instructions (see page 124), and add the appropriate procedures to test the new jump instructions. Your final program will show the results of eight comparisons.

8…Submit the final ASM file.

;Download copy of Program COMPARES.ASM: Compare two words of data different ways.

;

 .MODEL SMALL

 .DATA

NUM1 DW 25000

NUM2 DW 26000

AXMSG DB 'AX equals$'

BXMSG DB 'BX equals$'

MSG DB ' '

TENTHOS DB ?

THOUS DB ?

HUNS DB ?

TENS DB ?

ONES DB ?

 DB 0DH,0AH,'$'

IMSG DB 'Instruction: CMP AX,BX',13,10,'$'

JCTMSG DB 'JC is True',13,10,'$'

JCFMSG DB 'JC is False',13,10,'$'

JZTMSG DB 'JZ is True',13,10,'$'

JZFMSG DB 'JZ is False',13,10,'$'

JATMSG DB 'JA is True',13,10,'$'

JAFMSG DB 'JA is False',13,10,'$'

JLTMSG DB 'JL is True',13,10,'$'

JLFMSG DB 'JL is False',13,10,'$'

 .CODE

 .STARTUP

 LEA DX,AXMSG ;display AX value

 MOV AH,9

 INT 21H

 MOV AX,NUM1

 CALL BTOD

 LEA DX,MSG

 MOV AH,9

 INT 21H

 LEA DX,BXMSG ;display BX value

 MOV AH,9

 INT 21H

 MOV AX,NUM2

 CALL BTOD

 LEA DX,MSG

 MOV AH,9

 INT 21H

 LEA DX,IMSG ;show 'CMP AX,BX'

 MOV AH,9

 INT 21H

 MOV AX,NUM1 ;start the comparisons

 MOV BX,NUM2

 CALL DOJC

 MOV AX,NUM1

 MOV BX,NUM2

 CALL DOJZ

 MOV AX,NUM1

 MOV BX,NUM2

 CALL DOJA

 MOV AX,NUM1

 MOV BX,NUM2

 CALL DOJL

 .EXIT

DOJC PROC FAR

 CMP AX,BX

 JC JCOK

 LEA DX,JCFMSG

 MOV AH,9

 INT 21H

 RET

JCOK: LEA DX,JCTMSG

 MOV AH,9

 INT 21H

 RET

DOJC ENDP

DOJZ PROC FAR

 CMP AX,BX

 JZ JZOK

 LEA DX,JZFMSG

 MOV AH,9

 INT 21H

 RET

JZOK: LEA DX,JZTMSG

 MOV AH,9

 INT 21H

 RET

DOJZ ENDP

DOJA PROC FAR

 CMP AX,BX

 JA JAOK

 LEA DX,JAFMSG

 MOV AH,9

 INT 21H

 RET

JAOK: LEA DX,JATMSG

 MOV AH,9

 INT 21H

 RET

DOJA ENDP

DOJL PROC FAR

 CMP AX,BX

 JL JLOK

 LEA DX,JLFMSG

 MOV AH,9

 INT 21H

 RET

JLOK: LEA DX,JLTMSG

 MOV AH,9

 INT 21H

 RET

DOJL ENDP

BTOD PROC FAR

 SUB DX,DX

 MOV BX,10000

 DIV BX ;get 10,000s digit

 ADD AL,30H

 MOV TENTHOS,AL

 XCHG AX,DX

 SUB DX,DX

 MOV BX,1000 ;get 1,000s digit

 DIV BX

 ADD AL,30H

 MOV THOUS,AL

 XCHG DX,AX

 MOV BL,100

 DIV BL ;get hundreds digit

 ADD AL,30H ;convert into ASCII digit

 MOV HUNS,AL ;and save

 XCHG AL,AH ;get remainder

 SUB AH,AH ;prepare for division by 10

 MOV BL,10

 DIV BL ;get tens digit

 ADD AL,30H ;convert into ASCII digit

 MOV TENS,AL ;and save

 ADD AH,30H ;convert ones digit into ASCII

 MOV ONES,AH ;and save

 RET

BTOD ENDP

 END

LAB 4 M3A4: Lab: Loops and Subroutines

1…..If viewing this through the Assignment tool, click the title above to go to the Submissions area.
Introduction
The purpose of this experiment is to examine the operation of loops and their close equivalent, subroutines.

Procedure
1. How many times does each loop execute?

[image: image13.png]HERE

(2)
MoV
1IN
DEC
DEC

BL, 1008
ax

BL

BL

HERE

MORE:

(o)
MoV
PUSH
CALL
poP
LOOR

©X, 10008
cx

suB

cx

MORE

2. Download LOOPS.ASM. Assemble and link to create LOOPS.EXE. Run the program.

3. Comment out the PUSH AX and POP AX instructions. Re-assemble, link, and run. Comment on any changes. Explain how the changes, if any, occurred.

4. Put the PUSH AX and POP AX instructions back in.

5. Take instructions from inside the loop and place them in a subroutine (or procedure). Thus, the loop will call the subroutine once each pass. Only instructions that directly control the looping should stay.

6. Assemble, link, and run the program. You should get the same results. Email the final ASM file.

7. Download LOOPS2.ASM. Assemble and link to create LOOPS2.EXE. Run the program. Explain why the loop pass counter value shown is correct.

8. Download SUBS.ASM. This file contains errors! Edit the file to correct the errors, then assemble, link, and run. Warning! The program may assemble and link correctly and still have errors that may crash your DOS window. The correct result in AL is 7.

9. Submit your findings.

Downloaded copy of Program LOOPS.ASM: Count the number of passes through a loop.

;

 .MODEL SMALL

 .DATA

LOOPS DW ?

MSG DB 'The number of loop passes is '

TENTHOS DB ?

THOUS DB ?

HUNS DB ?

TENS DB ?

ONES DB ?

 DB 0DH,0AH,'$'

 .CODE

 .STARTUP

 MOV AX,0 ;clear loop pass counter

;

;place user loop code here.

;Make sure INC AX is inside the innermost loop.

;

 MOV BX,0FF98H

BAK: PUSH AX

 MOV CX,1234H

 MOV DX,5678H

 XOR CX,DX

 MOV AX,9ABCH

 XOR CX,AX

 POP AX

 INC AX ;increment loop pass counter

 DEC BX

 JNZ BAK

;

;end of user loop code

;

 MOV LOOPS,AX ;display the loop pass counter

 CALL BTOD

 LEA DX,MSG

 MOV AH,9

 INT 21H

 .EXIT

BTOD PROC FAR

 MOV AX,LOOPS ;load binary input value

 SUB DX,DX

 MOV BX,10000

 DIV BX ;get 10,000s digit

 ADD AL,30H

 MOV TENTHOS,AL

 XCHG AX,DX

 SUB DX,DX

 MOV BX,1000 ;get 1,000s digit

 DIV BX

 ADD AL,30H

 MOV THOUS,AL

 XCHG DX,AX

 MOV BL,100

 DIV BL ;get hundreds digit

 ADD AL,30H ;convert into ASCII digit

 MOV HUNS,AL ;and save

 XCHG AL,AH ;get remainder

 SUB AH,AH ;prepare for division by 10

 MOV BL,10

 DIV BL ;get tens digit

 ADD AL,30H ;convert into ASCII digit

 MOV TENS,AL ;and save

 ADD AH,30H ;convert ones digit into ASCII

 MOV ONES,AH ;and save

 RET

BTOD ENDP

 END

LAB 5 M4A2: Lab: Interrupts

1. Introduction
The purpose of this experiment is to utilize the power of the 80x86 interrupt system.

Procedure
1. Open a DOS window and enter this command to start DEBUG and echo all its output to the file INTS.TXT:

DEBUG > INTS.TXT
2. You will not be able to see what you are typing, but enter this command next:

d 0:0 3ff
DEBUG will write a copy of the interrupt vector table to the INTS.TXT file.

3. Again, typing blind, enter a q to quit DEBUG.

4. Examine the INTS.TXT file and comment on anything interesting you discover. As an example, here is the INTS.TXT file created on my home computer.

5. Based on your INTS.TXT file, what are the CS:IP addresses for the following interrupts?
(a) INT 10H (Video BIOS)

(b) INT 13H (Disk Services)

(c) INT 21H (DOS Functions)

6. Examine Section 8.5 (pages 293 through 296). Then download VECTORS.ASM and assemble, link, and run.

7. To get a hardcopy of the VECTORS output, enter this DOS command:

VECTORS > VECS.TXT
You will need to hit 'Enter' four times to get back to the DOS prompt. Here is the sample VECS.TXT file from my computer.

8. Compare the INTS.TXT file with the results written to VECS.TXT.

9. Submit both TXT files with your comments.

;Download copy of Program VECTORS.ASM: View entire interrupt vector table.

;

 .MODEL SMALL

 .DATA

WMSG DB 0DH,0AH,'Hit any key to continue...',0DH,0AH,0DH,0AH,'$'

 .CODE

 .STARTUP

 SUB AL,AL ;begin with vector 0

NEWV: PUSH AX ;save vector number

 CALL DISPHEX ;display it

 MOV DL,' ' ;load blank character

 MOV AH,2 ;display character function

 INT 21H ;DOS call

 MOV DL,'=' ;load equal sign

 INT 21H ;and output

 MOV DL,' ' ;load another blank

 INT 21H ;and output

 POP AX ;get vector number back

 PUSH AX ;and save it again

 MOV AH,35H ;get interrupt vector function

 INT 21H ;DOS call

 MOV AX,ES ;get interupt segment

 CALL DISPHEX_16 ;display it

 MOV DL,':' ;load colon character

 MOV AH,2 ;display character function

 INT 21H ;DOS call

 MOV AX,BX ;get interrupt offset

 CALL DISPHEX_16 ;display it

 MOV DL,' ' ;load blank character

 MOV AH,2 ;display character function

 INT 21H ;DOS call

 INT 21H ;output a second blank

 POP AX ;get vector number back

 MOV DL,AL ;make a copy of it

 AND DL,3 ;should we output a new line?

 CMP DL,3

 JNZ NNL

 PUSH AX ;save vector number

 MOV DL,0DH ;load carriage return

 MOV AH,2 ;display character function

 INT 21H ;DOS call

 MOV DL,0AH ;also output a line feed

 INT 21H

 POP AX ;get vector number back

NNL: MOV DL,AL ;make copy of vector number

 CMP DL,255 ;finished?

 JZ NNP

 AND DL,63 ;should we pause here?

 CMP DL,63

 JNZ NNP

 PUSH AX ;save vector number

 LEA DX,WMSG ;set up pointer to pause message

 MOV AH,9 ;display string function

 INT 21H ;DOS call

 MOV AH,8 ;character input function

 INT 21H ;DOS call

 POP AX ;get vector number back

NNP: INC AL ;advance to nect vector

 CMP AL,0 ;did we wrap from 255 to 0?

 JNZ NEWV

 .EXIT

DISPHEX_16 PROC NEAR

 PUSH AX ;save number

 MOV AL,AH ;load upper byte

 CALL DISPHEX ;go display in hex

 POP AX ;get number back

 CALL DISPHEX ;go display lower byte

 RET

DISPHEX_16 ENDP

DISPHEX PROC NEAR

 PUSH AX ;save number

 SHR AL,1 ;get upper nybble

 SHR AL,1

 SHR AL,1

 SHR AL,1

 CALL HEXOUT ;display hex character

 POP AX ;get number back

 AND AL,0FH ;preserve lower nybble

 CALL HEXOUT ;display hex character

 RET

DISPHEX ENDP

HEXOUT PROC NEAR

 CMP AL,10 ;is AL greater than 10?

 JC NHA1 ;yes

 ADD AL,7 ;no, add alpha bias

NHA1: ADD AL,30H ;add ASCII bias

 MOV DL,AL ;load output character

 MOV AH,2 ;display character function

 INT 21H ;DOS call

 RET

HEXOUT ENDP

 END

You will need to hit 'Enter' four times to get back to the DOS prompt. Here is the sample VECS.TXT file from my computer
00 = 00C9:0F9E 01 = 0070:0465 02 = 0669:0016 03 = 0070:0465

04 = 0070:0465 05 = F000:FF54 06 = F000:7E08 07 = F000:E7D0

08 = 094B:0000 09 = 0669:0028 0A = F000:EF6F 0B = F000:EF6F

0C = F000:EF6F 0D = F000:EF6F 0E = 0669:009A 0F = 0070:0465

10 = 09F3:000B 11 = F000:F84D 12 = F000:F841 13 = FD6F:2427

14 = F000:E739 15 = 0271:053A 16 = 0070:042D 17 = 0439:0A28

18 = F000:E7A4 19 = 072A:002F 1A = F000:FE6E 1B = 0439:0604

1C = 094B:001D 1D = F000:F0A4 1E = 0000:0522 1F = C000:2041

20 = 00C9:0FA8 21 = 0864:0445 22 = FDDD:1D47 23 = 0E12:016D

24 = 0E12:0178 25 = 00C9:0FBC 26 = 0217:0037 27 = 00C9:0FD0

28 = 00C9:106C 29 = 0070:0466 2A = 0439:05B4 2B = 00C9:106C

2C = 00C9:106C 2D = 00C9:106C 2E = 0E12:0162 2F = 0E13:01CC

30 = C90F:E4EA 31 = F000:E700 32 = 00C9:106C 33 = 0945:0001

34 = 00C9:106C 35 = 00C9:106C 36 = 00C9:106C 37 = 00C9:106C

38 = 00C9:106C 39 = 00C9:106C 3A = 00C9:106C 3B = 00C9:106C

3C = 00C9:106C 3D = 00C9:106C 3E = 00C9:106C 3F = 00C9:106C

Hit any key to continue...

40 = F000:EC59 41 = F000:EFF5 42 = F000:F065 43 = C000:2454

44 = F000:E7D0 45 = F000:E7D0 46 = F000:E7D0 47 = F000:E7D0

48 = F000:E7D0 49 = F000:E7D0 4A = F000:E7D0 4B = FD4F:2627

4C = F000:E7D0 4D = F000:E7D0 4E = F000:E7D0 4F = 0070:04FC

50 = F000:EF6F 51 = F000:E7D0 52 = F000:E7D0 53 = F000:E7D0

54 = F000:E7D0 55 = F000:E7D0 56 = F000:E7D0 57 = F000:E7D0

58 = F000:E7D0 59 = F000:E7D0 5A = F000:E7D0 5B = F000:E7D0

5C = 0975:0003 5D = F000:E7D0 5E = F000:E7D0 5F = F000:E7D0

60 = 0000:0000 61 = 0000:0000 62 = 0000:0000 63 = 0000:0000

64 = 0000:0000 65 = 0000:0000 66 = 0000:0000 67 = 0946:0040

68 = F000:E7D0 69 = F000:E7D0 6A = F000:E7D0 6B = F000:E7D0

6C = F000:E7D0 6D = C000:131A 6E = F000:E7D0 6F = F000:E7D0

70 = 0669:0035 71 = F000:ECF3 72 = F000:EF6F 73 = F000:EF6F

74 = 0669:00E2 75 = F000:F0FC 76 = 0669:00FA 77 = 0669:0112

78 = 0000:0000 79 = 0000:0000 7A = 0000:0000 7B = 0000:0000

7C = 0000:0000 7D = 0000:0000 7E = 0000:0000 7F = 0000:0000

Hit any key to continue...

80 = 0000:0000 81 = 0000:0000 82 = 0000:0000 83 = 0000:0000

84 = 0000:0000 85 = 0000:0000 86 = 0000:0000 87 = 0000:0000

88 = 0000:0000 89 = 0000:0000 8A = 0000:0000 8B = 0000:0000

8C = 0000:0000 8D = 2EA7:0022 8E = 0202:FCC7 8F = F000:FFFF

90 = 0000:0000 91 = 0000:0000 92 = 0000:0000 93 = 0000:0000

94 = 0000:0000 95 = 0000:0000 96 = 0000:0000 97 = 0000:0000

98 = 0000:0000 99 = 0000:0000 9A = 0000:0000 9B = 0000:0000

9C = 0000:0000 9D = 0000:0000 9E = 0000:0000 9F = 0000:0000

A0 = 0000:0000 A1 = 0000:0000 A2 = 0000:0000 A3 = 0000:0000

A4 = 0000:0000 A5 = 0000:0000 A6 = 0000:0000 A7 = 0000:0000

A8 = 0000:0000 A9 = 0000:0000 AA = 0000:0000 AB = 0000:0000

AC = 0000:0000 AD = 0000:0000 AE = 0000:0000 AF = 0000:0000

B0 = 0000:0000 B1 = 0000:0000 B2 = 0000:0000 B3 = 0000:0000

B4 = 0000:0000 B5 = 0000:0000 B6 = 0000:0000 B7 = 0000:0000

B8 = 0000:0000 B9 = 0000:0000 BA = 0000:0000 BB = 0000:0000

BC = 0000:0000 BD = 0000:0000 BE = 0000:0000 BF = 0000:0000

Hit any key to continue...

C0 = 0000:0000 C1 = 0000:0000 C2 = 0000:0000 C3 = 0000:0000

C4 = 0000:0000 C5 = 0000:0000 C6 = 0000:0000 C7 = 0000:0000

C8 = 0000:0000 C9 = 0000:0000 CA = 0000:0000 CB = 0000:0000

CC = 0000:0000 CD = 0000:0000 CE = 0000:0000 CF = 0000:0000

D0 = 0000:0000 D1 = 0000:0000 D2 = 0000:0000 D3 = 0000:0000

D4 = 0000:0000 D5 = 0000:0000 D6 = 0000:0000 D7 = 0000:0000

D8 = 0000:0000 D9 = 0000:0000 DA = 0000:0000 DB = 0000:0000

DC = 0000:0000 DD = 0000:0000 DE = 0000:0000 DF = 0000:0000

E0 = 0000:0000 E1 = 0000:0000 E2 = 0000:0000 E3 = 0000:0000

E4 = 0100:0000 E5 = 00EF:6D01 E6 = 3C00:82F0 E7 = 01ED:4C80

E8 = DF93:D800 E9 = 0A02:DF02 EA = 2205:0A05 EB = 2205:0AED

EC = 86F0:00ED ED = 56C0:2C00 EE = 46F0:00ED EF = CEA1:BF02

F0 = 0007:C0A1 F1 = 8000:8000 F2 = 0000:0100 F3 = 007C:0000

F4 = 0002:0100 F5 = 1080:0280 F6 = 0203:00C4 F7 = 0000:0E00

F8 = 0001:7C00 F9 = 0001:0080 FA = 0000:0000 FB = 0001:0003

FC = 0001:A04F FD = 57E3:7C00 FE = 524A:5363 FF = 0246:F000
1. M5A3: Lab: Controlling the PC

2. Instructions

[image: image14.jpg]

If viewing this through the Assignment tool, click the title above to go to the Submissions area.
Introduction
The purpose of this experiment is to directly control the hardware of the PC. To prevent damage to sensitive hardware, we will only play with the hardware timer that controls the speaker

Procedure
1. Download the program TONE.ASM. Assemble, link, and run. Hopefully, you will hear the speaker beep at a 1 KHz rate for a short period of time.

2. Adjust the INNER and OUTER values until the tone lasts for 5 seconds. How many loops are required? What is the speed of the processor on your system?

3. Re-adjust the INNER and OUTER values for a tone duration of 0.25 seconds.

4. Modify the TONE.ASM program so that the 0.25 second 1 KHz tone plays five times, once each second. Hint: Use DOS INT 21H Function 2CH (Get Time) to read the system clock. Look for the seconds value to change. When it does, play the 0.25 second tone, then start watching the system clock again, waiting for the seconds to change again. Do this five times.

Here is some sample code for detecting when a new second has started:

[image: image15.png]MoV AH, 2CH
InT 21H
MoV NOW, DH

WAIT: MOV AH, 2CH
InT 21H
cup NOW, DH
az WALT

<

The loop exits at the beginning of the new second. You will need to define NOW in the DATA portion of the program (NOW DB ?).

5. Submit the final ASM file.

;download copy of Program TONE.ASM: Generate a 1 KHz tone on the PC speaker for 5 seconds.

;

 .MODEL SMALL

 .DATA

;Note: You will have to adjust these values to get the 5 seconds.

;The current values give just over 1 second on a 1.3 GHz machine.

OUTER DW 4000 ;outer loop count

INNER DW 50000 ;inner loop count

 .CODE

 .STARTUP

 CALL SPKRON ;turn speaker on

 MOV CX,1190 ;divisor for 1 KHz tone

 CALL LDTIMER ;set speaker frequency

 CALL DELAY ;wait for chosen duration

 CALL SPKROFF ;turn speaker off

 .EXIT

SPKRON PROC NEAR

 IN AL,61H ;read current state of port 61h

 OR AL,3 ;set speaker control bits

 OUT 61H,AL ;output new state

 RET

SPKRON ENDP

SPKROFF PROC NEAR

 IN AL,61H ;read current state of port 61h

 AND AL,0FCH ;clear speaker control bits

 OUT 61H,AL ;output new state

 RET

SPKROFF ENDP

DELAY PROC NEAR

 MOV DX,OUTER

WAIT1: MOV CX,INNER

WAIT2: NOP

 NOP

 NOP

 NOP

 LOOP WAIT2

 DEC DX

 JNZ WAIT1

 RET

DELAY ENDP

;Note: Output frequency equals 1,190,000 divided by CX

LDTIMER PROC NEAR

 MOV AL,0B6H ;timer 2 control word

 OUT 43H,AL

 MOV AL,CL ;output lower byte of count

 OUT 42H,AL

 MOV AL,CH ;output upper byte of count

 OUT 42H,AL

 RET

LDTIMER ENDP

 END

LAB 7 M5A4: Lab: Motherboards

1. Introduction
The purpose of this experiment is to examine the features of a typical PC motherboard, including:

· CPU and co-processor

· Memory

· I/O

· BIOS

· Interrupts

Procedure
1. Download EX8-14.PDF (6.7 MB) and give it a detailed skim.

2. Choose two chapters in the PDF for closer study. For each: 1) Do the "Questions/Activities" section and 2) Answer the questions in the Self Test section

3. Submit your findings.
Download copy of Program TONE.ASM: Generate a 1 KHz tone on the PC speaker for 5 seconds.

;

 .MODEL SMALL

 .DATA

;Note: You will have to adjust these values to get the 5 seconds.

;The current values give just over 1 second on a 1.3 GHz machine.

OUTER DW 4000 ;outer loop count

INNER DW 50000 ;inner loop count

 .CODE

 .STARTUP

 CALL SPKRON ;turn speaker on

 MOV CX,1190 ;divisor for 1 KHz tone

 CALL LDTIMER ;set speaker frequency

 CALL DELAY ;wait for chosen duration

 CALL SPKROFF ;turn speaker off

 .EXIT

SPKRON PROC NEAR

 IN AL,61H ;read current state of port 61h

 OR AL,3 ;set speaker control bits

 OUT 61H,AL ;output new state

 RET

SPKRON ENDP

SPKROFF PROC NEAR

 IN AL,61H ;read current state of port 61h

 AND AL,0FCH ;clear speaker control bits

 OUT 61H,AL ;output new state

 RET

SPKROFF ENDP

DELAY PROC NEAR

 MOV DX,OUTER

WAIT1: MOV CX,INNER

WAIT2: NOP

 NOP

 NOP

 NOP

 LOOP WAIT2

 DEC DX

 JNZ WAIT1

 RET

DELAY ENDP

;Note: Output frequency equals 1,190,000 divided by CX

LDTIMER PROC NEAR

 MOV AL,0B6H ;timer 2 control word

 OUT 43H,AL

 MOV AL,CL ;output lower byte of count

 OUT 42H,AL

 MOV AL,CH ;output upper byte of count

 OUT 42H,AL

 RET

LDTIMER ENDP

 END

LAB8 M6A2: Lab: The Floating-Point Unit

1. Introduction
The purpose of this experiment is to examine the operation of the floating-point unit.

Procedure
1. Using Example 11.19 as a guide, show how the number 355.6 is converted into a normalized short real format.

2. Modify the SQRT.ASM program so that the input number (FPX) is 355.6.

3. Assemble, link, and run the program. What are the results?

4. Does your hand conversion from Step 1 match the assemblers conversion in the list file?

5. Show how SQRT.ASM can be modified to display eight digits each for the integer and fractional parts of the converted number.

6. Do Programming Exercise 11.3.

7. Submit your findings.

[image: image16.emf]
PAGE
29

