
Software Project Management Plan

JAMES Project
15-413 Software Engineering

Fall 1997

Carnegie Mellon University

Pittsburgh, PA 15213

Revision History:

Version R0.9 9/25/97 Bernd Bruegge. Created

Version 1.0 12/9/97 Joyce Johnstone. Revised.

Preface:

This document addresses the requirements of the JAMES system. The intended audience for this
document are the designers and the clients of the project.

Target Audience:

Client, Developers

JAMES Members:

Gordon Cheng, Li-Lun Cheng, Christopher Chiappa, Arjun Cholkar, Uhyon Chung, Aveek Datta,
John Doe, Phillip Ezolt, Eric Farng, William Ferry, Sang Won Ham, Kevin Hamlen, Pradip Hari,
Yenni Kwek, Tze Bin Loh, Alexander Lozupone, Christopher Lumb, Vincent Mak, Darren Mauro,

Hoda Moustapha, Venkatesh Natarajan, Stan Pavlik, Michael Poole, Bob Poydence, Kalyana
Prattipati, Luis Rico-Gutierrez, Michael Samuel, Michael Scheinholtz, Joel Slovacek, Ann
Sluzhevsky, Marc Snyder, Steve Sprang, Paul Stadler, Herbert Stiel, Patrick Toole, Idan Waisman,
Aaron Wald, Andrew Wang, Zhongtao Wang, Nathaniel Woods, Jaewoo You, Bin Zhou.

Table of Contents

1. Introduction

1.1 Project Overview

1.2 Project Deliverables

1.3 Evolution of the Software Project Management Plan

1.4 Reference Materials

1.5 Definitions and Acronyms

2. Project Organization

2.1 Process Model

2.1.1 Project Planning

2.1.2 Analysis

2.1.3 Design

2.1.4 Analysis Review

2.1.5 Client Project Review

2.1.6 Prototype

2.1.7 Implementation

2.1.8 Unit Testing

2.1.9 System Integration

2.1.10 System Testing

2.1.11 Manual Integration

2.1.12 Client Presentation

2.2 Organizational Structure

2.2.1 Teams and Tasks

2.3 Organizational Boundaries and Interfaces

2.3.1 Electronic BBoard Communication

2.3.2 Meeting Times

2.4 Project Responsibilities

2.4.1 Project Management

2.4.2 Group Leader

2.4.3 Liaison

2.4.4 Document Editor

2.4.5 Configuration Manager

2.4.6 WebMaster

3. Managerial Process

3.1 Management Objectives and Priorities

3.2 Assumptions, Dependencies and Constraints

3.2.1 Assumptions

3.2.2 Dependencies

3.2.3 Constraints

3.3 Risk Management

3.3.1 Logbook Team

3.3.2 Maintenance Team

3.3.3 Simulation Team

3.3.4 Travel Team

3.3.5 VIP Team

3.3.6 HCI Team

3.3.7 Architecture Team

3.4 Monitoring and Controlling Mechanisms

4. Technical Process

4.1 Methods, Tools and Techniques

4.2 Software Documentation

4.3 Project Support Functions

4.4 Work Elements, Schedule and Budget

4.4.1 Overall Project Plan

4.4.2 Team plans

Table of Figures

Revision History:

Version 0.9 Sep 3, 1997 Bernd Bruegge. Created
Version 1.0 ... Revised

Preface:
This is the controlling document for the JAMES project. It specifies the technical and managerial approaches to
develop the software product. As such it is the companion document to Requirements Analysis Document (RAD).
Changes in either may imply changes in the other document. All technical and managerial activities required to
turnover the deliverables to the client are included. This includes scheduling, identification of tasks, and factors that
may impact the project and planning.

Target Audience:
This document is intended for the members of the James project, clients, designers, and project management.

Project Members:
Gordon Cheng, Li-Lun Cheng, Christopher Chiappa, Arjun Cholkar, Uhyon Chung, Aveek Datta, John Doe,
Phillip Ezolt, Eric Farng, William Ferry, Sang Won Ham, Kevin Hamlen, Pradip Hari, Yenni Kwek, Tze Bin Loh,
Alexander Lozupone, Christopher Lumb, Vincent Mak, Darren Mauro, Hoda Moustapha, Venkatesh Natarajan, Stan
Pavlik, Michael Poole, Bob Poydence, Kalyana Prattipati, Luis Rico Gutierrez, Michael Samuel, Michael
Scheinholtz, Joel Slovacek, Ann Sluzhevsky, Marc Snyder, Paul Stadler, Herbert Stiel, Patrick Toole, Idan
Waisman, Aaron Wald, Andrew Wang, Zhongtao Wang, Nathaniel Woods, Jaewoo You, Bin Zhou.

1. Introduction

Smart card technology has opened up a vast range of applications. Some of the key applications include pay phones,
mobile communications, electronic cash, parking, health care and network access. The possibilities of smart cards
are endless, because the smart card is a cost effective storage medium that provides high security and portability.

One important application will be the use of the card for the automotive industry as a value added service. Within
Mercedes Benz there are ideas and concepts for a broad spectrum of chip card applications to support physical
mobility, financial mobility (financial transactions), mental mobility (telecommunication, media services), and
financial security (assurances) of the card owner.

The JAMES project described in this document covers the development of prototypical service applications for use
with a smart card. This is viewed as an added service to be used by drivers of Mercedes Benz cars and automotive
service facilities.

1.1 Project Overview

This document is intended for the members of the project describing the managerial aspects and technical aspects.
The document is intended for planning and scheduling purposes, and serves as a summary document of the
deliverables expected from each of the teams.

The schedule of project phases and milestones is shown below in Table 1. Each phase results in a document that
must be approved by project management and the client liaison before it is baselined. (The baselined document is
placed under configuration management).

Table 1: Project Schedule

Date Project Phases Project Milestones

Jul 17 - Aug 23 Requirements Elicitation

Aug 26 Project Presentation by Clients

Aug 26 - Sep 24 Project Planning

Sep 11- Oct 16 Requirements Analysis

Oct 16 Analysis Review

Oct 9 - Oct 30 System Design

Oct 28 - Nov 13 Object Design

Oct 30 Project Review with Client (via
Internet &;video conference)

Nov 8 - Nov 20 Implementation &;Unit Testing

Nov 13 _ Object Design Review

Nov 17 Project Agreement

Nov 22 - Dec 4 System Integration &;System
Testing

Nov 25 Internal Project Review (functional
prototype)

Dec 9 Project Acceptance by Client (via
Internet &;video conference)

1.2 Project Deliverables

The project will a produce a running system on a Smart Card that interacts with the car and an external client/server
environment in a platform independent way. The system must pass the acceptance test suite as described in the
project agreement.

The following items will be produced by the JAMES System:

A Software Project Management Plan defining the technical and managerial processes necessary for
the development and delivery of the JAMES system (This document)
Agreement between client and developers, representing a contract between the client and the developers of
what is going to be delivered.
A Requirements Analysis Document describing the functional and global requirements of the system as
well as 4 models - the use case model, the object model, the functional model and the dynamic model. This
document is created in interaction with the application domain experts.
A System Design Document describing the design goals, tradeoffs made between design goals, the high
level decomposition of the system, concurrency identification, hardware/software platforms, data
management, global resource handling, software control implementation and boundary conditions. This
document forms the basis of the object design. This document is read by the analyst as well as the object
designer.
A Object Design Document is which is composed of two documents. The first document is an updated
RAD. The code related data will be in the form of JavaDoc output from the code from each team.
A Test Manual describing the unit and system tests performed on the JAMES system before delivery along
with expected and actual results. This document is used by the developers and maintainers.
Source code for all subsystems of the JAMES System.

The JAMES System documentation will describe the principles of operation. The delivery consists of a presentation
of the system, a demonstration of the working system and the successful passing of the acceptance test.The client
expects the acceptance test to be successfully demonstrated remotely via the Internet on Dec. 9, 1997 from 8:30 pm
to 10:20 pm. All work deliverables will be provided online on a project homepage. The work products will also be
delivered on a CD-ROM, Dec 12, 1997.

1.3 Evolution of the Software Project Management Plan

The software project management plan is under version control. Proposed changes and new versions of the plan are
announced on the course bulletin board 15-413 announce and are made available to all the project members.

1.4 Reference Materials

The following technical documentation is used by the project:

[Bruegge-Dutoit 97] Bernd Bruegge, Allan Dutoit: Model-Based Software Engineering: A Project-Oriented
Approach, Course Manuscript.
[Gamma 96] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides: Design Patterns, Addison-
Wesley, 1996, ISBN 0-201-63361-2.
[Orfali-Harkey 97] Robert Orfali, Dan Harkey, Client/Server Programming with Java and CORBA, Wiley &
Sons, Inc, 1997.
[Flanagan 96] David Flanagan, Java in a Nutshell, O'Reilly & Associates, Inc., 2nd edition, ISBN 1-56592-
183-6.
[JavaCard 97] JavaCard Consortium, The JavaCard 2.0 API, Draft Document, Revision July 1, 1997.
[Rational 97a] Using Rational Rose 4.0, Rational Software Corporation, Santa Clara, 1997

[Rational 97b] A Rational Approach to Software Development Using Rational Rose, Rational Software
Corporation, Santa Clara, 1997.
[Rational 97c] Round-Trip Engineering with Rational Rose/Java, Rational Software Corporation, Santa
Clara, 1997.
[CodeWarrior 97] Metrowerks, Inside CodeWarrior Professional, Release 1 for MacOS, Windows NT and
Windows 95, Metrowerks, Inc., 1997.
[IEEE 828] IEEE Standard for Software Configuration Management Plans, ANSI/IEEE Std. 828-199.
[IEEE 1058] IEEE Standard for Software Project Management ANSI/IEEEStd.1058.1-1987.
[IEEE 1074] IEEE Standard for Developing Software Life Cycle Processes, ANSI/IEEE Std. 1074-1991.
Software Engineering Course Schedule, 15-413 Fall 1997,
http://casacade1.se.cs.cmu.edu/JAMES/J_courseDocs /J_schedule.html.
JAMES System: Problem Statement, 15-413 Fall 1997, Course Handout,
http://casacade1.se.cs.cmu.edu/JAMES/J_courseDocs/PS /ProblemS.html.

1.5 Definitions and Acronyms

API - Applications Programming Interface
CASE - Computer Aided Software Engineering
GUI - Graphical User Interface
JAMES - Java Architecture for Mobile Extended Services
JDK - Java Development Kit
ODD - Object Design Document
OMT - Object-Oriented Modeling Technique
RAD - Requirements Analysis Document
ROSE - Visual modeling tool for Java
SDD - System Design Document
SPMP - Software Project Management Plan
UML - Unified Modeling Notation
VIP - Vehicle Initialization and Personalization

2. Project Organization

2.1 Process Model

The project is initiated on Aug 26, 1997 and terminated with the end of the semester on Dec 9, 1997. Major
milestones are the Client Project Review on Oct 30, 1997 and the Client Acceptance Test on Dec 9, 1997.

The project uses an object-oriented design methodology based on the Objectory lifecycle process and uses UML for
the development of the software. The development process is organized in several activities. The members of the
project are organized in teams. At the end of each activity up to and including testing, each team submits documents
describing the achievement of the activity. The individual approved documents produced by the teams are considered
work products and are part of the software documentation. The team documents are under version control using
Perforce running on a PC platform using Free BSE version 2.2. Links to the team documentation are available from
the team homepages and the course electronic bulletin boards.The links to the major documents on the Perforce
server are also available from the project home page. The activities and milestones are described in the next following
sections.

2.1.1 Project Planning

Project planning includes description of project tasks, activities and functions, dependencies, resource requirements
and a detailed schedule. This activity results in the software project management plan for the JAMES System.
Another output of the planning phase is the project agreement, which is issued after the design activity is completed.

2.1.2 Requirements Analysis

The requirements analysis activity takes the problem statement and reviews it in terms of consistency, completeness
and feasibility. During this activity, a set of models of the proposed system is determined by interacting with the
clients resulting in the requirements model. The main part of the requirements model are four models: the use case
model describing the complete functionality of the system, the object model, the functional model and the dynamic
model.

2.1.3 System Design

The purpose of the system design activity is to devise a system architecture that maps the analysis model to the
chosen target environment. The major part of the system design phase is the design of subsystems, that is, the
decomposition of the system with respect to the chosen target platform. The system design activity also refines the
use cases from the analysis model and describes in terms of interaction diagrams how the objects interact in each
specific use case.

2.1.4 Analysis Review

Review of software project management plan, requirements analysis and design. The meetings will take place on Oct
16 from 9:00- 10:20 in WeH 7500. The Analysis Review consists of a set of presentations given by members of the
JAMES project. Project Management will review these slides and post their comments on the 15-413 discuss
bboard.

2.1.6 GUI Prototype Demonstration

This activity involves the demonstration of the graphical user interface of the JAMES System. The GUI prototype of
the JAMES system is expected to be demonstrated on Nov 25 during the Internal Project Review. The prototype
must be viewable on the project homepage.

2.1.5 Client Project Review

Review of project plan, requirements analysis and design decisions. The client liaison will be present at the meeting.
The meeting will take place on Oct 30 from 9:00-10:20 in WeH 7500. The Client Project Review presentation slides
will be made available to the client.

2.1.6 Functional Prototype Demonstration

This activity involves successful execution of a functional prototype of the JAMES System using stubs. The

functional prototype of the James system will be presented during the internal review Nov 25 1997.

2.1.7 Object Design Phase

The object design phase specifies the fully typed API for each subsystem. New classes are added to the analysis
object model if necessitated by the system architecture. Attributes and methods for each object are fully typed.

2.1.8. System Integration Prototype Demonstration

This activity involves the demonstration of a fully functional system prototype based on the subsystem
decomposition. Each subsystem is represented by its service. All service operations can be called by other
subsystems using remote method invocation. The implementation of the services can be stubbed out.

2.1.9 Implementation

The focus of this activity is on coding the individual objects described in the object design document.

2.1.10 Unit Testing

During unit testing, test suites are designed and executed for objects or collections of objects in each subsystem. Unit
testing enables the individual subsystems to be tested independent from the status of the other subsystems. The result
of this activity is part of the test manual that describes how to operate the test suite and how to interpret the test
results.

2.1.11 System Integration

During this activity an integration strategy is devised, that specifies the order in which the subsystems of the JAMES
system are integrated and tested with respect to the use cases defined in the analysis model. The system integration
strategy and the subsystem tests are described in the Test Manual.

2.1.12 System Testing

Structural Testing: This activity tests the major data paths in the complete JAMES System.Functional
Testing: Tests the major functionality (use cases) with the complete JAMES System. The basis for the functional
testing activity is the test manual which is revised according to the results of the system testing phase.Alpha-test
(Client Acceptance Test): The system is tested to make sure it passes the client acceptance criteria as defined in
the project agreement.

2.1.13 Manual Integration

During this activity, the project deliverables are revised. As a result, a complete set of documents consisting of the
software project management plan, requirements analysis document, software design document, test manual and
source code is made available on the project home page. The system documentation will also be printed on a CD.
Each of the students taking the course as well as the clients will receive a CD.

2.1.13 Client Presentation

At the Client Presentation, a slide presentation and software demonstration will be given in the Intelligent Workplace
at Carnegie Mellon University. The software developed during the project will be demonstrated for the client
acceptance test. The clients will attend the client acceptance test in person or via video conference.

2.2 Organizational Structure

Below is the organizational chart of the people involved in the development of the JAMES system .

Figure 1: Organization Chart for JAMES Project

The clients of the JAMES System project are:
Dieter Hege, Brigitte Pihulak, Daimler Benz
The project managers are:
Bernd Bruegge, Malcolm Bauer, Brian Cavalier, Allen Dutoit, Alfonso Guerrero-Galan, Sam Perman, Isabel
Torres-Yebra
The Infrastructure team consists of:
Joyce Johnstone (Web Master and Lab Management)and Stephan Schoenig (CASE Tool and Java support,
Communication Infrastructure)
The project consultants are:
Dieter Hege, Klaus Eitzenberger, Manfred Mueller, Juergen Bortolazzi, Claus Czymmek, Arno Schmackpfeffer,
Thorsten Armstroff

DB user group members and list of consultants

2.2.1 Teams and Tasks

This section describes the teams working on JAMES subsystems and their tasks:

Logbook Assistant (Logbook Team)
Distinguish between business and private trips
Support disconnect mode while driving the vehicle
Make sure every trip is stored on the Smart Card, even if the driver forgets to enter any information at
the beginning of the trip.
Make it impossible to manipulate the trips in the logbook that have already been taken.

Allow multiple drivers to record the use of the same vehicle
Allow logbook entries for 50 trips
Allow multiple use of the vehicle by different drivers (fleet management, identification with the smart
card)
Create form to report tax deductible usage of the car.

Maintenance Assistant (Maintenance Team)
Authenticate the customer to the system
Maintain maintenance history of the vehicle
Communicate with Legacy System
Track accumulated Bonus Points

Travel Assistant (Travel Team)
Create the core component of the travel assistant
Plan trip functionality
Modify trip functionality
Locate car on map
Guidance on map
Also, if possible and time permits, the following:

Point out sites of interest
Dynamic (on the road) trip alteration
Monitor weather conditions and detours
Location of car if stolen

VIP Assistant (VIP Team)
Build subsytem to communicate user preferences to vehicle (seat position)
drive control adjustments: cockpit control settings, suspension and fuel economy
convenience adjustments: position of the seats, mirrors, radio station, audio-level and air-
conditioning
business adjustments: addresses/telephone book, information from the mailbox, appointments
bookand logbook settings
general adjustments: settings of navigation system, information systems (such as road conditions,
weather information)

Vehicle (Simulator Team)
Access to the functionality of a Mercedes Benz Car simulator provided by the Daimler Benz R&D,;
division (F1).
Provide platform independent interface to the simulator.
Provide web-based access to the simulator.
Show that JAMES applications are able to be integrated with the existing electronic systems in the car
(mirror/seat position, speedometer).

User Interface (HCI Team, Cross-Matrix Team)
Set standards for common GUI elements

Software Architecture (Architecture Team, Cross-Matrix Team)
Maintain JAMES's system model
Ensure consistency of JAMES's system model with the design model
Define software architecture
Create common class library
Create system integration plan

Documentation (Cross-Functional Team)
Integrate the system documentation (SPMP, RAD, SDD, ODD, Test Manual)
Review final deliverable documentation for completeness

Infrastructure Team
The purpose of the infrastructure team is to provide smooth operation of the vehicle systems lab and
software tools supporting the development. The members are Joyce Johnstone and Stephan
Schoenig. Their office is in Building BOM D 154. Their responsibilities are:

Web Master, Lab Management: Joyce Johnstone
Lotus Notes and Perforce: Stephan Schoenig

2.3 Organizational Boundaries and Interfaces

2.3.1 Electronic BBoard Communication

The Lotus Notes Databases shown in Table 1 will be used for electronic communication in the JAMES project. Note

that these databases are intended to replace Andrew bulletin boards academic.cs.15-413 that have been set up for this
course (The Andrew bboards are neither used nor read by project management).

Table 2: Electronic Bboards for JAMES Project

Announcements Lecture and project announcements

Discuss Group discussion

Issues Structured discussion providing for Issues, Proposals,
Arguments, and Resolutions

Client Discuss Primary forum for interchange with the clients

Handin For electronic submission of homework

Help Request for assistance in course material, software
applications

Review of Documents

Documentation submittal for review with automatic e-
mail notification of the reviewers and inclusion of the
comments on the initial post with the document. The
sequence of the reviews can be set up in parallel or
series.

Logbook Team Discuss Discussion about the Logbook Assistant

Maintenance Team Discuss Discussion about the Maintenance Assistant and Bonus
Assistant

Simulation Team Discuss Discussion about the Vehicle Simulator

Travel Team Discuss Discussion about the Travel Assistant

VIP Team Discuss Discussion about the Vehicle Initialization and
Personalization

Architecture Discuss Discussion of project architecture and class library

HCI Discuss Discussion of user interface design

Configuration Discuss Discussion of the use of the Perforce client and server

Documentation Discuss Used for informal review of documentation and posting
of resource material

Every team member has to:

Bookmark the Announcements, Discuss, Client, Handin, and Help Bboards
Bookmark the team specific bboard
Check these bboards at least twice a day

Communication with the client is primarily via the Client BBoard. As the need arises direct e-mail and/or telephone
contact is set up with specific consultants within the client organization.

2.3.2 Meeting Times

There is a weekly project meeting for each group. The initial project meeting times are:

Group Day Time Location

Logbook Monday 8:00 p.m. Wean 8220

Maintenance Wednesday 4:30 p.m Smith 100

Simulation Thursday 4:30 p.m. Smith 101

Travel Tuesday 6:00 p.m. Porter 231B

VIP Thursday 5:30 p.m. Wean 7220

HCI Tuesday 4:30 p.m. Hamburg 1202

Architecture Tuesday 5:00 p.m. Smith 100

2.4 Project Responsibilities

Management of the JAMES System is done with the following roles: project management, coach, group leader,
Architecture liaison, HCI liaison, document editor, configuration manager, card master and webmaster.

2.4.1 Project Management

The project management function has the following responsibilities:

Schedule and prepare meetings with clients
Assign presentations (In-class Project meetings, client review, client acceptance test) to project members
Listening to gripes from the team members
Resolve conflicts if they cannot be resolved otherwise

2.4.2 Coach

The coach has the following responsibilities:

Review weekly team progress
Attend weekly team meetings
Insist that guidelines are followed

2.4.3 Group Leader

The group leader leads an individual team. The main responsibility of the group leader is to manage the action items
of the group. In addition he or she has the following responsibilities:

Responsible for intragroup communication
Run the weekly project meeting
Define, post and keep track of action items (who, what, when), i.e the agenda
Measure progress and enforce milestones
Deliver work packages for the tasks to project management
Deliver project plan and accomplishment for project phase to project management
Coordinate and schedule use of resources needed by team (lab, tools,...)
The group leadership position has to be rotated on a regular basis among the team members.

2.4.4 Architecture Liaison

The liaison interacts with the liaisons of the other teams and with the project management. Each team has a liaison to
the Architecture Team. The responsibilities of the liaison are:

Responsible for intergroup communication
Make available public definitions of each subsystem service ("API") to the other teams (ensure consistency,
etc.)

Coordinate tasks that overlap subsystems with the teams
Responsible for team negotiations, that is, resolve technical issues spanning more than one subsystem
Defines the software architecture for JAMES
Defines the class library for JAMES

2.4.5. HCI Liaison

The liaison interacts with the liaisons of the other teams and with the project management. Each team has a liaison to
the HCI Team. The responsibilities of the liaison are:

Responsible for inter-group communication
Make available public descriptions of each subsystem interface to the other teams (ensure consistency, etc.)
Coordinate interfaces for overlapping subsystems with the teams
Resolve technical interface issues spanning more than one subsystem
Defines the hardware and software elements of interface for JAMES
Develops the style ("look & feel") for JAMES

2.4.6 Documentation Editor

The editor in each team is responsible for producing the documentation of the current project phase and:

Collect, proofread and distribute team documentation to the Architecture team
Interaction with the Architecture team
Writes minutes and provides them to team Webmaster

2.4.7 Configuration Manager

The responsibilities of the configuration manager in each team are:

Coordinate change requests
Provide version control for group's working directory
Coordinates configuration management issues with other groups
Installation of group specific software and hardware

2.4.8 WebMaster

The responsibilities of the webmaster in each team are:

Maintain the Team Homepage
Coordinate team page with course Webmaster
Link Meeting Agendas, Minutes, Action Items and Issues to the team homepage
Maintain links to team documentation under version control

2.4.9 Card Master

The responsibilities of the card master in each team are:

Maintain Cyberflex environment
Keep track of updates from Schlumberger
Understand Java Card API
Be able to download of applets (applets to cardlets)
Manage team's JavaCard

Table 2 describes the group leader assignments and Table 3 indicates the other team assignments.

Team Leader Assignments

Logbook Maintenance Travel VIP Vehicle

Requirements
Analysis Uhyon Chong Arjun Cholkar Bin Zhou Andrew/Jay

System Design Pradip Hari,
Michael Poole Joel Slovacek John Doe Robin

Object Design
Michael
Stienholtz, Aaron
Wald

Yenni Kwek Kalyana Prattipati Hoda Moustapha

Implementation Herb Stiel Vincent Mak Christofer
Chiappa Will

Testing Nate Woods Darren Mauro Michael Samuel,
Ann Sluzhevsky Paul/Ogi

Team Role Assignments

Logbook Maintenance Travel VIP Vehicle

Card Master Michael
Scheinholtz Arjun Cholkar Bin Zhou Philip G Ezolt Jaewoo You

CASE Modeler Herbert Stiel Joel Slovacek Michael Samuel Christopher
Lumb Hoda Moustapha

HCI Liaison Nathaniel Woods Yenni Kwek Gordon Cheng Idan Waisman Paul Stadler

Architecture
Liaison Pradip Hari Vincent Mak Ann Sluzhevsky Venkatesh

Natarajan Andrew Wang

Configuration
Manager Michael Poole Darren Mauro Chris Chiappa Eric Farng William Ferry

WebMaster Uhyon Chung Aveek Datta Kalyana Prattipati Li-Lun Cheng Tze Bin Loh

Documentation
Editor Aaron Wald Stanislav Pavlik John Doe Patrick Toole Bob Poydence

Coach Alfonso
Guerrero-Galan Sam Perman Isabel Torres-

Yebra Brian Cavalier Bernd Bruegge

3. Managerial Process

3.1 Management Objectives and Priorities

The philosophy of this project is to provide a vehicle for students to get hands-on experience with the technical and
managerial aspects of a complex software problem. The emphasis is on team work and encouraging individual teams
to work together towards the goal of implementing the JAMES system completely.

3.2 Assumptions, Dependencies and Constraints

The functionality of the JAMES System is achieved when the client acceptance test can be executed.

Each software development activity results in one or more documents to be submitted to the project management
before the deadline. Each document is reviewed at least once by the project management before it is accepted and
becomes a baseline document.

The following documents will be graded: SPMP, RAD, SDD, ODD, TM and are worth each 10 points. The agenda,

minutes, action items and issues for each weekly team meeting have to be posted. The complete set of these is also
worth 10 points. We will give a project A to everybody who participates in the project if all the project deliverables
are delivered and the JAMES system passes the client acceptance test as defined in the requirements analysis
document.

The JAMES System is a project that puts emphasis on collaboration, not competition between the students. We will
not accept a system that is done by one team alone.

3.2.1 Assumptions

3.2.1.1 Logbook:

That the card is used by the driver.
We will be able to lock data on the card so that it can not be tampered with.
We can determine what information tax collection agencies need in order to stipulate that a trip is tax
deductible.

3.2.1.2 Maintenance:

All of the dealers will have access to a smart card reader and to the Legacy System (via the Web).
We will be in communication with the client throughout the duration of the project.
The functionality and information on the card does not get corrupted.

3.2.1.3 Simulation:

System wide architecture will be able to meet constraints of simulation team resources.
Card Master keeps up with the latest news about the changes of Cyberflex.
That simulator documentation will be obtainable.
That simulator hardware will be reliable.
The Perforce software will function as expected and will not be difficult to learn or use.
Space will be provided by the CMU AFS servers to store the web page files.
Resources will be made available expeditiously to the web master for posting upon request.
AIM web interface can be integrated fully into the team web page.
There are no bugs in the CASE tool ROSE. The learning curve of case tool is not very high.
We have full license to create and add things that we see fit to the hardware architecture.
Communication via CORBA to the rest of the application is attainable on the linux platform.
We can all learn the programming tools without difficulty.
There are enough computing resources.
The smart card technology is sufficient for the needs of the project.
All software development tools will perform to specifications.

3.2.1.4 Travel:

CD-ROM based map application will be available and APIs can be obtained.
Speech input/output resources will be available.
Maps are downloadable from web within acceptable timeframe.
GPS system can be obtained with APIs.
The digital screen resolution planned for the vehicle is adequate for graphic display of the maps.

3.2.1.5 VIP:

That the simulator works and we can interface to it.
That we have some way to interface with the vehicle itself (i.e. seats, etc.), or have the means to create some
interface.
Sufficient number of machines will be available so that we can write the needed code.
Enough space exists on the card or that there is some way for us to store needed information there, or access
said information by other means.
We also assume that all tools to be used work properly.

3.2.2 Dependencies

3.2.2.1 Logbook:

The HCI team will come up with a system to interact with the logbook that would allow us to meet some of
our goals. Such as distinguishing between drivers, and allowing additional information about a trip to be
entered.
There is a way to distinguish between drivers, get the location of the car, mileage of the car, etc, from the car
systems.

3.2.2.2 Maintenance:

We depend on the stability of the hardware and software involved in the development of the project.
We depend on other groups in the project to provide us with objects we need.

3.2.2.3 Simulation:

Other subsystems depend on the simulation team to test their products.
Other members depend on card master to provide information on javacard and Cyberflex.
Depend on vendors and client for certain documentation and simulator hardware.
Other team members depend on a version control policy that will not slow down their ability to make and
implement changes to the code.
Daimler Benz's provision of the AIM system . Group leader's submission of agendas before each meeting
and the documentation editor's submission of minutes one hour after each meeting. Chief web master of
JAMES project to provide mirror site of the team web page.
Other member depends on case modeler to "publish" their design decisions.
AIM Simulator from Daimler Benz. Needs of other teams on the project. Good communication among team
and non-team members (via liaisons).
Proper timing of project phases.

3.2.2.4 Travel:

We will receive inputs from the car (e.g. Speed). API's are available for external systems.
Simulation team is able give us usable system.

3.2.2.5 VIP:

We will be able to send and receive data from the simulator.
A bridge pattern will work to interface with either the simulator or vehicle.
The JavaCard has adequate space for data storage.
Hardware and software resources continue to function properly.

3.2.3 Constraints

3.2.3.1 Logbook:

We will be able to come up with a scheme to store 50 trips on a single java card.

3.2.3.2 Maintenance:

Quantity of memory storage space on the card.
Deadline and time constraints.
All the code has to be developed in Java.

3.2.3.3 Simulation:

Simulation system must identify and meet the needs of the other subsystems.
Our source code has to comply with the limits of javacard.
Must rely on other people and teams to supply certain documentation.
Must rely on team members to follow version control policy and take care to verify that any code that is
committed does not cause the system to unexpectedly break.

The ROSE tool automatically generates code in Java JDK 1.02.
Must provide an acceptable interface to the automobile which is easily and readily accessible to the other
project teams. Restricted to features feasibly applicable in an automotive environment.
Must be CORBA architecture compliant (or something else that fits into the grand scheme of things).

3.2.3.4 Travel:

Java language specifications and the Java virtual machine.
Card will have enough useful space.

3.2.3.5 VIP:

Limited by the space/functionality provided by the card.
Quality of the simulator (so that we can perform sophisticated tests).
Short delivery time, something that can be done by December 9.

3.3 Risk Management

We assume that the hardware/software configuration on top of which the JAMES System is built, is performing
reliably.

The individual team risk management assessments are as follows:

3.3.1 Logbook Team

Risk: If we do not have a solid understanding of the JavaCard and how it works we risk designing a system that will
not work with the actual card.

Contingency: Allot time to experiment with small prototypes on the JavaCard.

Risk: The storage constraints on the card might limit the number of trips that can be stored.

Contingency: Reduce the number of trips westore locally on the card, perhaps develop a system that
allows for transfer of trips from card to PC.

Risk: The interface to the car might limit what sort of data can actually be collected, and this may or may not be
enough for meeting the goal of creating a tax deductible form.

Contingency: Create a partial form.

3.3.2 Maintenance Team

Risk: We may get over ambitious, try to implement more features than allowed for by our time and resource
constraints.

Contingency: We will try to implement all of the required features first and leave room for additional
features if time permits. We will break up the requirements into smaller tasks so that they are more
flexible and easier to manage. The tasks will be prioritized. The worst case scenario would require us
to start cutting features with low priority.

Risk: Team members drop the course.

Contingency: We must then redistribute the tasks among the remaining members. By keeping all of
the other members informed on what we are working on, it will help to lessen the learning curved
involved in taking over a project for someone else. By breaking the project into smaller, more
manageable tasks, the extra work would be easier to handle.

Risk: We miss an important feature in the software system to be built.

Contingency: Develop a functional prototype and request a review by the client liaison.

Risk: The client is unable to respond to questions about the system in a reasonable time frame.

Contingency: Post the question to project management and otherwise use the team's concensus.

3.3.3 Simulation Team

Risk: Other subsystems decide that they need a different architecture or functionality from simulation team.

Contingency: Keep in constant communication with other subsystems until we can identify a solution
that will satisfy their needs and our constraints.

Risks: If we don't have a clear understanding of the limits of javacard and Cyberflex, we may come up with solution
that cannot be fit into the card.

Contingency: Our source code has to comply with the limits of javacard.

Risk: Simulation documentation will be overwhelming, time consuming, or not in English.

Contingency: Streamline documents, get uniform formats, and delegate some work.

Risk: Team member may be working on test code that they do not want to commit to the archive because they are not
sure if the code will break the system.

Contingency: Need to determine a protocol for maintaining test branches of version tree, or some
other method to allow such testing code to be produced without affecting main project.

Risk: Team member may be unable to work on a file from the depot because somebody else currently has the file
open.

Contingency: Need to establish a system to contact team members so that files can be unlocked. Need
to ensure that only files being actively edited are held open by any member.

Risk: Failure of servers containing the web files.

Contingency: Reduce this risk by coordinating with chief web master to update mirror site on a
constant basis.

Risk: Miscommunication between webmaster and dependencies leading to inaccuracy and delay of new information.

Contingency: Duplex communication between web master and other team members will allow quick
recovery and correction of errors.

Risk: Redundancy of web information due to repetitive information found in JAMES web page.

Contingency: Have to achieve a good balance between convenience (through providence of links) and
excessive repetition of easily available web resources.

Risk: The ROSE case tool will not support java 1.1. The ROSE case tool has bugs or is not efficient.

Contingency: We use ROSE for making diagrams and manually generate our own java 1.1 code or
restrict ourselves to using java 1.02.

3.3.5 VIP Team

Risk: Porting the system to multiple vehicles. The hope is that there will be some translation device that will adjust
data so that even if you switch models/makes of cars there will be little to no need to change the settings.

Contigency: If this option is not possible then we will need to discuss with the client which vehicles
need to be implemented so that a maximal number of platforms will be supported within the time
allotted.

Risk: the code will not be scalable to allow for new features and cars with ease.

Contigency: The only real contingency for this is to inform the client of the functionality available and
to decide whether there is time enough to alter the code so that it is scalable with a fair amount of
ease.

Risk: Dependency on the Simulation and Architecture teams.

Contingencies are we have our representative encourage them to speed up or help. Failing that we
will discuss ways to get them on schedule with the staff. Failing there we will write the code we need
provided there is sufficient time. If there is not enough time then we will discuss with the client to
maximize desired functioning features within the remaining time.

Risk: Smart Card is supposed to work on every Mercedes Benz car. But because of the fact that different cars have
different stuffs, compatibility is a risk. Some functionality may be supported by a certain kind of cars but may not be
supported by some cars else. For example, some cheap car may not have air condition, the card we are going to
make shall not only work on the cars with air condition (means user can control the air condition through car) but
also work on the cars without air condition. If the shape of the car is new and fancy, the card may not support it at all
because we don't know what new features will be in it.

Contingency: In order to make product be compatible, we need to build object models of cars. This
also has risk that the current object tool only supports Java 1.0, we may not do as many thing as we
want.

Risk: The size of the card is limited. If we don't design it carefully, it may be possible that the final code won't fit on
the card.

Contingency: Carefully design and implement the system.

3.4 Monitoring and Controlling Mechanisms

For each project meeting each team produces an agenda and the minutes of the meeting. The minutes have to contain
explicitly the action items assigned during the meeting. The agenda and minutes are posted on team specific bulletin
boards by the minute taker of the meeting.

The baseline documents are reviewed by the project management. It is expected that each document undergoes one or
more iterations.

4. Technical Process

4.1 Methods, Tools and Techniques

Our development methodology is based on a combination of use cases (from the OOSE methodology) [Jacobsen 92]
combined with the OMT methodology [Rumbaugh 1991].The following tools are available to support the

management and development of the JAMES project:

Code Warrior: A set of Java tools for the "back end" of software development, compilation, editing and
debugging of Java programs.

Netscape Communicator Internet browser

Adobe PageMill 2.0, Claris Home Page 2.0, FrontPage HTML editors

Rose/Java CASE tool for UML by Rational Software Corporation.

Adobe Acrobat 3.0 Portable Document Format Software Reader

Powerpoint 4.0 Slide Presentation program

4.2 Software Documentation

The following activities result in a project deliverable: -
Project Planning: Software Project Management Plan (SPMP) -
Requirements Analysis: Requirements Analysis Document (RAD) -
Analysis Review: Analysis Review Slides -
System Design: System Design Document (SDD) -
Client Review: Client Review Slides -
Object Design: Object Design Document (ODD) -
Reviews: Review Presentation Slides -
Implementation and Unit Testing: Code -
System Integration and System Testing: Test Manual -
Delivery: Client Acceptance Test Slides

4.4 Work Elements, Schedule and Budget

4.4.1 Overall Project Plan

The overall project plan follows the sawtooth model, a modified waterfall model. 3 prototypes have to be delivered:
A graphical user interface, a functional prototype and a system integration prototype. Analysis is started before
Project Planning is finished. System Design is followed by Object Design. Important Milestones are the Analysis
Review Oct 16, the Project Status on Oct 23, the Project Review on Oct 30 and the Object Design Review on Nov 13
and Nov 15. Implementation and Unit Testing are scheduled to overlap significantly. System Integration is
scheduled to immediately follow Unit Testing. System Testing starts immediately after system integration and leads
to the Client Acceptance Test on Dec 9.

