Student ID: 22006482

Exam: 086009RR - Inductors in AC Circuits

When you have completed your exam and reviewed your answers, click **Submit Exam**. Answers will not be recorded until you hit **Submit Exam**. If you need to exit before completing the exam, click **Cancel Exam**.

Questions 1 to 25: Select the best answer to each question. Note that a question and its answers may be split across a page break, so be sure that you have seen the *entire* question and *all* the answers before choosing an answer.

1. An inductor rated at 10 mH and a 100 Ω resistor are in an AC circuit that has a frequency of 100 Hz. What is the inductive reactance at this frequency?

A. 12.56 Ω

B. 6.28 Ω

C. 31.40 Ω

D. 62.8 Ω

2. What is the inductive reactance of a 0.5 H inductor connected with a 1000 Ω resistor in an AC circuit supplied with 48 VAC at 100 Hz?

Α. 500 Ω

B. 0.31 Ω

C. 150.72 Ω

D. 314 Ω

3. A series circuit contains a 30 mH inductor and a 200 Ω resistor. What is the total circuit current (rounded) if the applied voltage is 60 V and the frequency is 1000 Hz?

A. 0.84 A

B. 1.24 A

C. 0.44 A

D. 0.22 A

4. What is the time constant of a 5 mH inductor in series with 2000 Ω resistor?

A. 2.5 μs

B. 10 ms

C. 5 ms

D. 10 μs

5. If an 80 mH inductor is in series with a 220 Ω resistor in a circuit with a source frequency of 1000 Hz, what will be the phase angle (rounded) of the current with respect to the voltage?

A. 70°

B. 50°

C. 48°

D. 66°

- 6. What is the inductive reactance of the circuit's two coils as shown in the figure?
- **A.** 308.98 Ω
- **B.** 2574.80 Ω
- C. 1029.92 Ω
- **D.** 20.10 Ω

7. A circuit contains a 20 μ H and a 60 μ H inductor connected in parallel. These two inductors are in series with a 1000 Ω resistor. The circuit has a source voltage of 30 VAC at 10,000 Hz. What is the total inductive reactance of this circuit?

- **A.** 2.43 Ω
- $\textbf{B.}~0.942~\Omega$
- **C.** 63.6 Ω
- **D.** 94.2 Ω

- 8. What is the current through the inductor shown in the figure?
- **A.** 1.45 A
- **B.** 450.50 A
- **C.** 0.450 A
- **D.** 1.21 A

- 9. What is the impedance of the circuit shown in the figure?
- **A.** 285.15 Ω
- **B.** 60.23 Ω

C. 141.76 ΩD. 70.88 Ω

10. What is the total current (I_T) of the circuit shown in the figure?

A. 1.71 A

B. 1.50 A

C. 1.31 A

D. 0.88 A

11. A 6 mH, a 2 mH, and a 10 mH inductor are placed in series with a 1000 Ω resistor in a circuit. The circuit has a source voltage of 60 VAC at 1000 Hz. What is the total inductive reactance of this circuit?

A. 93.80 Ω

B. 86.42 Ω

C. 121.64 Ω

D. 113.04 Ω

12. A 10 mH inductor and a 100 Ω resistor are connected in parallel. The circuit is supplied with 24 VAC at 2000 Hz. What is the inductive reactance of the inductor?

A. 442.6 Ω

B. 386.2 Ω

C. 125.6 Ω

D. 226.4 Ω

13. What is the inductive reactance of the circuit shown in the figure?

A. 6.91 Ω

B. 41.45 Ω

C. 34.54 Ω

D. 41,448 Ω

14. A circuit contains a 60 mH and a 40 mH inductor connected in parallel. The circuit has a source voltage of 100 VAC and a frequency of 1000 Hz. What is the total inductive reactance (rounded) of the circuit?

A. 173 Ω

B. 151 Ω **C.** 194 Ω **D.** 212 Ω

15. What is the total circuit current of the circuit shown in the figure?

A. 0.19 A

B. 0.18 A

C. 0.06 A

D. 0.04 A

16. What is the approximate lagging phase angle for the current in the circuit shown in the figure?

A. 75°

B. 45°

C. 30°

D. 85°

17. A 10 mH inductor and a 100 Ω resistor are connected in parallel. The circuit is supplied with 24 VAC at 2000 Hz. What is the phase angle (rounded) of this circuit?

A. 49.2°

B. 38.4°

C. 24.6°

D. 28.2°

18. Which of the following denotes impedance?

A. *R*

B. X_L

C.*Z*

D. H

19. What is the total inductance of the circuit shown in the figure?

A. 1.0 H

- **B.** 0.48 H
- **C.** 0.63 H
- **D.** 0.16 H

20. What is the total inductance of the circuit shown in the figure?

- **A.** 0.82 H
- **B.** 20.80 H
- **C.** 2.05 H
- **D.** 51.25 H

21. If you doubled the voltage frequency in an RL series AC circuit, the inductive resistance would

A. increase by only one quarter.

- **B.** also double.
- C. remain constant.

D. decrease by only one half.

22. A 10 mH inductor and a 100 Ω resistor are connected in parallel. The circuit is supplied with 24 VAC at 2000 Hz. What is the impedance (rounded) of the circuit?

- **A.** 57.38 Ω
- **B.** 78.23 Ω
- **C.** 108.71 Ω
- **D.** 98.16 Ω

23. A circuit has an inductor with an inductive reactance of 230 Ω . This inductor is in series with a 500 Ω resistor. If the source voltage is 24 V, what is the total circuit current (rounded)?

- **A.** 0.44 A
- **B.** 0.04 A
- **C.** 0.18 A

D. 0.22 A

- 24. Which of the following denotes inductive reactance?
- **A.** *R*
- **B.** X_L
- С. Н
- **D.** *Z*

25. What is the current through the resistor in the circuit shown in the figure?

A. 5 A

B. 0.50 A

C. 0.60 A

D. 2 A

End of exam