ECE 204 Introduction to Digital Logic Bill Nelson Homework \#7

NAME: \qquad Due: 03/06/2017

Show your work. Answers without supporting work will not earn full credit. Ignore all flip-flop sets and resets.

1. Draw a five D flip-flop Johnson counter. Do not include forbidden state detection. Assuming the flip-flops are initially all ones, show the successive states through the return to all ones.

ECE 204 Introduction to Digital Logic Bill Nelson Homework \#7

2. Given the following circuit, generate its state chart and draw its state diagram.

\mathbf{X}	\mathbf{Y}	\mathbf{A}	\mathbf{X}^{+}	\mathbf{Y}^{+}	\mathbf{Z}	$\mathbf{D}_{\mathbf{X}}$	$\mathbf{D}_{\mathbf{Y}}$
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

ECE 204 Introduction to Digital Logic Bill Nelson Homework \#7

PROBLEM \#2, Continued:

ECE 204 Introduction to Digital Logic Bill Nelson
 Homework \#7

3. Given the following state diagram, generate the corresponding state chart including the D inputs. Also give the minimized equations for the \mathbf{D} inputs and for the output, \mathbf{B}. Let the state bits be labeled \mathbf{X} and \mathbf{Y}, the input \mathbf{A} and the output \mathbf{B}.

ECE 204 Introduction to Digital Logic Bill Nelson

PROBLEM \#3, Continued:

\mathbf{X}	\mathbf{Y}	\mathbf{A}	\mathbf{X}^{+}	\mathbf{Y}^{+}	\mathbf{B}	$\mathbf{D}_{\mathbf{X}}$	$\mathbf{D}_{\mathbf{Y}}$
0	0	0					
0	0	1					
0	1	0					
0	1	1					
1	0	0					
1	0	1					
1	1	0					
1	1	1					

$X / Y A$	00	01	11	10
0				
1				

$X / Y A$	00	01	11	10
0				
1				

X / YA	00	01	11	10
0				
1				

ECE 204 Introduction to Digital Logic Bill Nelson
 Homework \#7

4. Complete the following partial state chart by showing the necessary \boldsymbol{J} and \boldsymbol{K} inputs for the flip flops. Give the minimized equations for the \boldsymbol{J} and \boldsymbol{K} inputs and for the output, and draw the state diagram. The state bits are \mathbf{A} and \mathbf{B}, the input is \mathbf{C} and the output is \mathbf{Z}.

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{A}^{+}	\mathbf{B}^{+}	\mathbf{Z}	J_{A}	K_{A}	J_{B}	$\mathrm{K}_{\mathbf{B}}$
0	0	0	0	1	0				
0	0	1	1	0	1				
0	1	0	0	0	0				
0	1	1	1	1	1				
1	0	0	0	0	0				
1	0	1	1	1	1				
1	1	0	1	0	0				
1	1	1	0	1	1				

ECE 204 Introduction to Digital Logic Bill Nelson

PROBLEM \#4, Continued:

A / B C	00	01	11	10
0				
1				

A / B C	00	01	11	10
0				
1				

A / B C	00	01	11	10
0				
1				

A / B C	00	01	11	10
0				
1				

A / B C	00	01	11	10
0				
1				

ECE 204 Introduction to Digital Logic Bill Nelson Homework \#7

PROBLEM \#4, Continued:

ECE 204 Introduction to Digital Logic Bill Nelson Homework \#7

5. Given the following state diagram, generate the corresponding state chart including the necessary \boldsymbol{J} and \boldsymbol{K} inputs. Also give the minimized equations for the \boldsymbol{J} and \boldsymbol{K} inputs and for the output. Let the state bits be labeled \mathbf{X}, \mathbf{Y} and \mathbf{Z}, the input \mathbf{A} and the output f.

States 100, 110 \& 111 are unused. If entered, these state return to state 0XX

ECE 204 Introduction to Digital Logic Bill Nelson Homework \#7

PROBLEM \#5, Continued:

\mathbf{X}	\mathbf{Y}	\mathbf{Z}	\mathbf{A}	\mathbf{X}^{+}	\mathbf{Y}^{+}	\mathbf{Z}^{+}	f	$\mathrm{~J}_{\mathrm{X}}$	K_{X}	J_{Y}	K_{Y}	$\mathrm{J}_{\mathbf{Z}}$	$\mathrm{K}_{\mathbf{Z}}$
0	0	0	0										
0	0	0	1										
0	0	1	0										
0	0	1	1										
0	1	0	0										
0	1	0	1										
0	1	1	0										
0	1	1	1										
1	0	0	0										
1	0	0	1										
1	0	1	0										
1	0	1	1										
1	1	0	0										
1	1	0	1										
1	1	1	0										
1	1	1	1										

$\mathrm{XY} / \mathrm{ZA}$	00	01	11	10
00				
01				
11				
10				

$X Y / Z A$	00	01	11	10
00				
01				
11				
10				

ECE 204 Introduction to Digital Logic Bill Nelson

PROBLEM \#5, Continued:

$X Y / Z A$	00	01	11	10
00				
01				
11				
10				

$X Y / Z A$	00	01	11	10
00				
01				
11				
10				

$X Y / Z A$	00	01	11	10
00				
01				
11				
10				

$X Y / Z A$	00	01	11	10
00				
01				
11				
10				

$X Y / Z A$	00	01	11	10
00				
01				
11				
10				

ECE 204 Introduction to Digital Logic Bill Nelson
 Homework \#7

6. Design an 8 -state state machine counter with the following characteristics:

- If the \mathbf{e} (even) input is 1 , the next state is the next even numbered state (modulo 8).
- If the \mathbf{e} input is 0 , the next state is the next odd numbered state (modulo 8).
- States are encoded using J-K flip-flops labeled $\mathbf{X}, \mathbf{Y} \& \mathbf{Z}$ with \mathbf{X} the MSB.
- The counter has no output other than the state flip-flops. Give the state table, the state diagram and the minimized equations For the J and K inputs to each flip-flop.

| \mathbf{X} | \mathbf{Y} | \mathbf{Z} | \mathbf{e} | \mathbf{X}^{+} | \mathbf{Y}^{+} | \mathbf{Z}^{+} | $\mathbf{J}_{\mathbf{X}}$ | $\mathbf{K}_{\mathbf{X}}$ | $\mathbf{J}_{\mathbf{Y}}$ | $\mathbf{K}_{\mathbf{Y}}$ | $\mathbf{J}_{\mathbf{Z}}$ | $\mathbf{K}_{\mathbf{Z}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | 0 | | | | | | | | | |
| 0 | 0 | 0 | 1 | | | | | | | | | |
| 0 | 0 | 1 | 0 | | | | | | | | | |
| 0 | 0 | 1 | 1 | | | | | | | | | |
| 0 | 1 | 0 | 0 | | | | | | | | | |
| 0 | 1 | 0 | 1 | | | | | | | | | |
| 0 | 1 | 1 | 0 | | | | | | | | | |
| 0 | 1 | 1 | 1 | | | | | | | | | |
| 1 | 0 | 0 | 0 | | | | | | | | | |
| 1 | 0 | 0 | 1 | | | | | | | | | |
| 1 | 0 | 1 | 0 | | | | | | | | | |
| 1 | 0 | 1 | 1 | | | | | | | | | |
| 1 | 1 | 0 | 0 | | | | | | | | | |
| 1 | 1 | 0 | 1 | | | | | | | | | |
| 1 | 1 | 1 | 0 | | | | | | | | | |
| 1 | 1 | 1 | 1 | | | | | | | | | |

ECE 204 Introduction to Digital Logic Bill Nelson Homework \#7

PROBLEM \#6, Continued:

ECE 204 Introduction to Digital Logic Bill Nelson

PROBLEM \#6, Continued:

$X Y / Z e$	00	01	11	10
00				
01				
11				
10				

$X Y / \mathrm{Ze}$	00	01	11	10
00				
01				
11				
10				

$X Y / Z e$	00	01	11	10
00				
01				
11				
10				

$X Y / Z e$	00	01	11	10
00				
01				
11				
10				

$X Y /$ Ze	00	01	11	10
00				
01				
11				
10				

$\mathrm{XY} / \mathrm{Ze}$	00	01	11	10
00				
01				
11				
10				

ECE 204 Introduction to Digital Logic Bill Nelson

 Homework \#77. Draw a five D flip-flop PN counter using an XOR and taps at stages

3 and 5. Do not include forbidden state detection. Show the first 12 successive states assuming the initial state is $\{1,0,0,0,1\}$.

