
Artificial Intelligence
CSCI-5430

Fall 2016/ Dr. Kai Wang



Outline

• Games

• Optimal decisions

• Minimax algorithm

• α-β pruning

• Imperfect, real-time decisions



Games

• Multi agent environments: any given agent will 
need to consider the actions of other agents and 
how they affect its own welfare.

• The unpredictability of these other agents can 
introduce many possible contingencies

• There could be competitive or cooperative 
environments

• Competitive environments, in which the agents’ 
goals are in conflict, require adversarial search –
these problems are often called games



Games

• In game theory (economics), any multi-agent 

environment (either cooperative or competitive) is a 

game provided that the impact of each agent on the 

others is significant

• In AI, the most common games are of a specialized kind 

- deterministic, turn taking, two-player, zero sum games 

of perfect information

• In our terminology – deterministic, fully observable 

environments with two agents whose actions alternate 

and the utility values at the end of the game are always

equal and opposite (+1 and –1)



Games – history of chess playing

• 1949 – Shannon paper – originated the ideas

• 1951 – Turing paper – hand simulation

• 1958 – Bernstein program

• 1955~1960 – Simon-Newell program

• 1961 – Soviet program

• 1966~1967 – MacHack 6 – defeated a good player

• 1970s – NW chess 4.5

• 1980s – Cray Bitz

• 1990s – Belle, Hitech, Deep Thought

• 1997 – Deep Blue - defeated Garry Kasparov

• 2016 – AlphaGo - defeated Lee Sedol



Games formulated as search problems

• Initial state: specifies how the game is initially set up

• PLAYER(s): Defines which player has the move in a 

state.

• ACTIONS(s): Returns the set of legal moves in a state.

• RESULT(s, a): The transition model, which defines the 

result of a move.

• TERMINAL-TEST(s): A terminal test, which is true when 

the game is over and false otherwise. States where the 

game has ended are called terminal states.

• UTILITY(s, p): A utility function (also called an objective 

function or payoff function), defines the final numeric 

value for a game that ends in terminal state s for a player 

p. 



Game Tree Search

• Game tree: defined by the initial state, ACTIONS 

and RESULT functions. It is a tree where the 

nodes are game states and the edges are 

moves. It incorporates all possible games.

• Games with two players MAX and MIN. MAX 

moves first from the initial state.

• We are not looking for a path, only the next 

move to make. Our best move depends on what 

the other player does.

• Entire tree is too large to be stored in memory.



Partial Game Tree for Tic-Tac-Toe



Optimal strategies

• In a normal search problem, the optimal solution would be a 

sequence of moves leading to a goal

• In a two-player game, MIN has something to say about it and 

therefore MAX must find a contingent strategy, which specifies

– MAX’s move in the initial state,

– then MAX’s moves in the states resulting from every 

possible response by MIN,

– then MAX’s moves in the states resulting from every 

possible response by MIN to those moves

–…

• An optimal strategy leads to outcomes at least as good as any 

other strategy when one is playing an infallible opponent. It

maximizes the worst-case outcome for MAX.

• If MIN does not play optimally, MAX’s optimal strategy will do 

ever better.



Minimax: brute-force optimal 

strategy
• Perfect play for deterministic games

• Idea: choose moving to position with highest 

minimax value = best achievable payoff against 

best opponent play

• E.g., 1 move (2-ply) game tree (Fig 5.2):



Minimax value

• Given a game tree, the optimal strategy can be

determined by examining the minimax value of

each node (MINIMAX-VALUE(n))

• The minimax value of a node is the utility of 

being in the corresponding state, assuming that 

both players play optimally from there to the end 

of the game

• Given a choice, MAX prefers to move to a state 

of maximum value, whereas MIN prefers a state 

of minimum value



Minimax formula

• For the game in Fig 5.2, MINIMAX-VALUE(root) = 
max(min(3,12,8), min(2,4,6), min(14,5,2)) = max(3,2,2) = 
3



Minimax algorithm (similar to 

AND-OR search?)



Properties of minimax

• Complete? Yes (if tree is finite)

• Optimal? Yes (against an optimal opponent)

• Time complexity? O(bm)

• Space complexity? O(bm) (depth-first exploration)

• For chess, b ≈ 35, m ≈ 100 for "reasonable" games

- exact solution completely infeasible



Multiplayer Games



Multiplayer Games

• Use a vector of values as the utilities for each state from 

each player’s perspective.

• The utility value of a node n is always the utility vector of 

the successor state with the highest value for the player 

choosing at n.

• Alliance might be a natural consequence of optimal 

strategies for each player in a multiplayer game. It might 

emerge or disappear depending on game state.



α-β pruning

• It is possible to compute the correct minimax decision 

without looking at every node in the game tree

• MINIMAX-VALUE(root) = max(min(3,12,8), min(2,x,y), 

min(14,5,2))= max(3,min(2,x,y),2)

= max(3,z,2) where z≤2

= 3



α-β pruning



Why is it called α-β?

• α is the value of the best (i.e., highest value) 

choice found so far at any choice point along the 

path for MAX

• If v is worse than α, MAX will avoid it

- prune that branch

• β is the value of the best (i.e., lowest-value) 

choice found so far at any choice point along the 

path for MIN

• If v is better than β, MAX will not reach it

- prune that branch



The α-β search algorithm



Properties of α-β
• Pruning does not affect final result

• Good move ordering improves effectiveness of pruning

• With "perfect ordering,“ which means best move first, time 

complexity= O(bm/2) - doubles depth of search with the 

same amount of computational resources

• With “random ordering," time complexity is roughly 

O(b3m/4).

• It is worthwhile to store the evaluation of explored 

positions in a hash table, called transposition table, so 

that we don’t have to recompute it on subsequent 

occurrences. But it is not practical to keep all of them in 

the transposition table. Various strategies have been used 

to choose which nodes to keep and which to discard. 



Another α-β pruning example

• https://www.youtube.com/watch?v=xBXHtz4Gbdo



Imperfect Real-time Decisions
• Games are often played under time limits, e.g. 3 

minutes per move - not enough time to search the 

entire tree

• Standard approach:

- cutoff test: e.g., depth limit (perhaps add 

quiescence search)

- evaluation function: an estimate of the expected 

utility of the game from a given position

•



Evaluation functions

• An evaluation function should order the terminal states in the 

same way as the true utility function: states that are wins 

must evaluate better than draws, which in turn must be 

better than losses.

• An evaluation function should not be too hard to evaluate 

and for nonterminal states it should be strongly correlated 

with the actual chances of winning.

• A typical evaluation function is a linear function in which 

some set of coefficients is used to weight a number of 

"features" of the board position.

• For chess, typically linear weighted sum of features

Eval(s) = w1f1(s) + w2f2(s) + … + wnfn(s)

• e.g., w1 = 9 with f1(s) = (number of white queens) – (number 

of black queens), etc.



Evaluation functions

• Using linear combination of features as an evaluation 

function involves a strong assumption that the contribution of 

each feature is independent of the values of the other 

features.

• The assumption may not be true. For example, bishops are 

more powerful in the endgame, when they have a lot of 

space to maneuver. Thus, weight for a feature can be 

adjusted to reflect this to make it more accurate.

• Weights can be learned by machine learning techniques.



Cutting off search

• Replace the two lines in α-β search that mention 

TERMINAL-TEST with the following line:

if CUTOFF-TEST(state, depth) then return EVAL(state)

• We may use a fixed depth limit. But the limit may be 

unfortunate due to wild swings in the near future.

• In chess, for example, positions in which favorable captures 

can be made are not quiescent for an evaluation function 

that just counts material. Nonquiescent positions can be 

expanded further until quiescent positions are reached. This 

extra search is called a quiescence search.



Cutting off search

• The horizon effect is more difficult to eliminate in cut-off 

search. It arises when the program is facing an opponent’s 

move that causes serious damage and is ultimately 

unavoidable, but can be temporarily avoided by delaying 

tactics.

• One strategy to mitigate the horizon effect is the singular 

extension, a move that is “clearly better” than all other 

moves in a given position. Once discovered anywhere in the

tree in the course of a search, this singular move is 

remembered. When the search reaches the normal depth 

limit, the algorithm checks to see if the singular extension is 

a legal move; if it is, the algorithm allows the move to be 

considered.



Forward Pruning
• Idea: prune some moves at a given node immediately 

without further consideration.

• One approach to forward pruning is beam search: on each 

ply, consider only a “beam” of the n best moves (according 

to the evaluation function) rather than considering all 

possible moves.

• The PROBCUT algorithm (Buro, 1995) is a forward-pruning 

version of alpha–beta search that uses statistics gained 

from prior experience to lessen the chance that the best 

move will be pruned. Alpha–beta search prunes any node 

that is provably outside the current (α, β) window. 

PROBCUT prunes nodes that are probably outside the 

window. It computes this probability by doing a shallow 

search to compute the backed-up value v of a node and 

then using past experience to estimate how likely it is that 

a score of v at depth d in the tree would be outside (α, β).



Search vs Lookup

• Opening and endgame strategies in chess can 

often use table lookup rather search.

• For the openings, the computer is mostly relying 

on the expertise of humans.

• Endgame strategies can be found by performing a 

retrograde minimax search: reverse the rules of 

chess to do unmoves rather than moves. Any 

move by White that, no matter what move Black 

responds with, ends up in a position marked as a 

win, must also be a win.



Stochastic Games
• When random event is introduced into a game, it 

becomes a stochastic game

• Backgammon – a game that involves randomness 

due to dice rolling before a move



Partial game tree for a 

backgammon position



How to compute expected 

minimax value
• A stochastic game tree must include chance 

nodes in addition to MAX and MIN nodes.

• Positions do not have definite minimax

values but expected values 

(expectiminimax value): the average

over all possible outcomes of the chance 

nodes.

• Time complexity of EXPECTIMINIMAX: 

O((bn)m), where n is the number of possible 

outcomes of a random event.



How to compute expected 

minimax value
• Terminal nodes and MAX and MIN nodes (for which the 

dice roll is known) work exactly the same way as before. 

For chance nodes we compute the expected value, which 

is the sum of the value over all outcomes, weighted by the 

probability of each chance action:



Evaluation functions for games of chance

• We could apply an evaluation function to a cut-off 

position. But evaluation functions in games of 

chance must be carefully designed because a 

change in the scale of evaluation function could 

result in a change of optimal move.



Alpha-beta pruning for 

stochastic game tree search?
• In order to get good alpha-beta pruning, we need good 

upper and lower bounds for evaluation function. This could 

happen when all the utilities are bounded.

• We could use Monte Carlo simulation to evaluate a 

position. Start with an alpha–beta (or other) search 

algorithm. From a start position, have the algorithm play 

thousands of games against itself, using random dice rolls. 

In the case of backgammon, the resulting win percentage 

has been shown to be a good approximation of the value of 

the position, even if the algorithm has an imperfect 

heuristic and is searching only a few plies (Tesauro, 1995). 

For games with dice, this type of simulation is called a 

rollout.



Summary

• Game, minimax search, alpha-beta pruning


