[bookmark: _GoBack]VBScript Input/Process/Output Lab
Objectives
In this lab, students will complete the following objectives.
· Create a VBScript Program using NotePad++.
· Learn various objects and methods used for data input.
· Learn various objects and methods used for the display of data

Lab Diagram
During your session you will have access to the following lab configuration.
[image:]

Connecting to your lab
For this lab, we only need to connect to Vlab-PC1. This is the computer on the left side. If you leave the cursor on the PC icon for a few seconds, a tool-tip message will appear indicating the hostname of the PC.
· Vlab-PC1

To start, simply click on the named Workstation from the device list (located on the left hand side of the screen) and click Power on in the tools bar. In some cases the devices may power on automatically.
During the boot-up process an activity indicator will be displayed in the name tab.
· Black—Powered Off
· Orange—Working on your request
· Green—Ready to access
If the remote console is not displayed automatically in the main window (or popup) click the Connect icon located in the tools bar to start your session.
If the remote console does not appear please try the following option.
· Switch between the HTML 5 and Java client versions in the tools bar.
In the event this does not resolve your connectivity problems please visit our Help/Support pages for additional resolution options.

Task 1: Practice using NotePad++
Note: All captures of Script code must be text only, do not capture the NotePad++ application window. Script run to the Command Prompt or NotePad++ Console window must also Text only capture. Runs of programs that display output in a pop-up desktop window require printscreen <Alt><PrtSc> to capture the output window.
Before starting VBScript Input/Output lab, you should practice using NotePad++ to run and debug VBScript programs.
1) Open the NotePad++ program by double-clicking on the NotePad++ desktop icon or single-clicking on the Quick Launch bar NotePad++ icon.
2) Click on the File/Open toolbar icon (or use the File/Open menu option). Navigate to the C:\comp230\ directory and select the EchoDemo.vbs program. Click the Open button.
[image:]

3) The EchoDemo.vbs program should appear in NotePad++ as shown below.

[image:]

4) We are going to run the program from a command window. Open the Windows Command Prompt using the icon on the desktop. CScript is the WSH Interpreter for running VBScript programs in a console window. You can run the program using the full pathname of the file by typing:
cscript c:\comp230\echodemo.vbs

Or you can first navigate to the comp230 directory with the command:
cd c:\comp230
To run the program, type
cscript EchoDemo.vbs

5) The program output is shown below.
[image:]
6) WScript is the WSH Interpreter for running VBScript programs in a desktop window. Run the program again by typing
wscript echodemo.vbs.
Output is displayed in a popup window.
[image:]
7) Click OK to close the window.
8) Now let’s look at the debugging procedure for a VBScript console program.
9) Change line 6 as shown below misspelling the word Echo. Save the program by pressing <Ctrl>S.

[image:]

10) Return to the command window and run the program from the comp230 directory using
cscript EchoDemo.vbs.
This time, the program doesn’t run, but an error message is displayed with the line numbered where the error was detected.
[image:]
11) Correct the typing error and save the changes with <Ctrl>S.
12) Other suggested demo programs you should run that relate to this week’s lab include the following.
CmdArgs.vbs, InputBoxDemo.vbs, PopUpDemo.vbs, StdInDemo.vbs
StdOutDemo.vbs.
Note: If you want to set up and run NotePad++ on your own computer, please download the CLI_NotePad++_Settings.docx document found in Doc Sharing.
Task 2: NameAge.vbs Script Using Console Input and Output Stream
1) From the File menu, select New.
[image:]

2) In the Source Code editor, create a Programmer Header that includes the name of your VBScript file, your name, the date, the class, and the name of your professor. Each of these VBScript comment lines begin with a (’) character.
[image:]

3) From the File Menu, select Save. Save your program as NameAge.vbs in the C:\comp230 folder as shown below. Subsequent saves can be accomplished using the hotkey <Ctrl>S.

[image:]

4) After your Programmer header, add the comment line shown below and define the variable name and ageStr. By assigning the “” value to name and ageStr, we are declaring them to be string variables that can store alpha numeric characters.
[image:]
5) WScript.StdOut is the Standard Output stream object that sends text to the console window. It has three methods of interest to us. Write(), WriteLine() and WriteBlankLines().
We will use Write to prompt the user for an input value. Note that the value inside the parentheses must be a string value. Here we are using a string constant in double quotes. Note that I have added a line of periods terminated by a space to make the prompts and input values line up.
The Write method does not output a <Cr><Lf> (the “enter” key) but keeps the cursor on the same line. This is what we need to keep the prompt and the input values on the same line. The WriteLine between the two prompts is used to skip one line. WScript.StdIn is the Standard Input stream object that receives input from the keyboard. Here we are using the ReadLine method to accept lines of text from the keyboard terminated by a carriage return (<Enter> key).

[image:]

Now that we have the user’s age, we will create a new string variable called ageStr10 and give it a calculated value that is a string equivalent of the user’s age plus 10 years. The following steps are required.
5.1) Convert the ageStr value into a number (integer) value using the CInt() function.
5.2) Add 10 to the CInt() converted ageStr value.
5.3) Convert the sum of the CInt() converted ageStr + 10 into a string equivalent value using the CStr() function.

5.4) Assign the CStr() converted sum of age + 10 to the variable ageStr10.
[image:]

CInt(strval) and CStr(numval) are VBScript conversion functions. All user input and output are string values. Given a ageStr has a value of “56”: CInt(ageStr)+10 gives the integer (whole number) value 66. Therefore ageStr10 = CStr(CInt(ageStr)+10)) assigns the value “66” to ageStr10. Do you see how all four steps are accomplished in a single code line?

6) Let’s skip two lines and display the user’s name and age, The WriteBlankLines() method is used to skip two lines and the WriteLine() method displays our text output to the console window and sends a <newline> at the end to move the cursor to the beginning of the next line. The & symbol is used to add multiple strings together. The vbTab is a tab character that moves the cursor to the next horizontal tab position to help line up data.

[image:]
7) Now we need to display the value for the user’s age in 10 years. Below are the remaining lines of our program. At the end of the first line, notice the & _. . The & is the concatenation operator that “glues” the pieces of the output together. The _ is the line continuation character that is necessary when a command extends to the next line. The rest of the WriteLine statement is continued on the next line. This continued line contains ageStr10 variable concatenated with vbCrLf.

[image:]

8) Save your program (<Ctrl>S). Return to your command window and run by typing
cscript NameAge.vbs.
Respond to the prompts by typing in a name and an age. Press the enter key after each input. Note that you should be able to run the program with different inputs and get the correct output.

A sample RUN of the completed program is shown below. The user is prompted for their full name and age. After receiving this data input from the keyboard, two blank lines are displayed and the user’s full name and age values are displayed. After skipping one more line, the user’s age in 10 years will be calculated and displayed. After one more skipped line, the End of Program message is displayed.

[image:]

9) Enter the user name and age values and verify the program runs as expected.

Copy your program from NotePad++ and paste it into the space specified for the NameAge.vbs program in your lab-report document. Capture the Run from the NotePad++ console or Windows CLI and copy it into the space provided for the NameAge.vbs Run in your lab-report document.
Before we exit this program and begin the next one, let’s explore the limitations of using the StdIn and StdOut streams. Return to the command window and try to execute the program using wscript by typing
wscript NameAge.vbs.
Wscript is supposed to send output to a pop-up window on the desktop. Click Run and let’s see what happens. Running the NameAge.vbs program from the Windows CLI with wscript will generate the error shown below.
The bottom line is, StdIn and StdOut streams only work in a console window using cscript.
[image:]

Task 3: PopUpWindow.vbs Script Using WScript.Echo for Output
1) We are going to use the NameAge.vbs as a starting point for our next program. Save As your NameAge.vbs program with the name PopUpWindow.vbs.
[image:]
2) Change the variable definition lines for name and AgeStr to

[image:]
3) Because we are assigning values to the variables we do not need to prompt the user for input. Delete all the lines shown below that we used for User prompts and keyboard input.
[image:]
4) Also delete the line: WScript.StdOut.WriteBlankLines(2).
5) Change the remaining four Writeline statements as follows.

Replace the WScript.StdOut.WriteLine(portion of the remaining lines with WScript.Echo . Also remove the closing parentheses from each of these lines.
For example, the statement
WScript.StdOut.Writeline(“Your name is “ & vbTab & vbTab & name)
would be replaced with
WScript.Echo “Your name is “ & vbTab & vbTab & name.
Make the same changes for the remaining lines.

6) Save the program (<Ctrl>S) and run from the console window using cscript. You should get the console output shown below.

[image:]

As you can see the WScript.Echo output of this program looks very much like the WScript.StdOut.Write() output of the NameAge.vbs program.
7) Now return to command window and run using
wscript popupwindow.vbs.
The output will be displayed in a series of pop-up windows as shown below.
[image:]

8) Let review what we’ve learned about WScript.StdOut.Write() and WScript.Echo:
8.1) You cannot use the wscript interpreter to run any VBScript program that contains
 WScript.StdOut or WScript.StdIn methods.
8.2) A VBScript program containing only WScript.echo for output can be run as a Console app using cscript or a Windows app using wscript.
8.3) wscript creates a new PopUpWindow for every time WScript.Echo command encountered.
9) If we want all of our output to appear in one pop-up window, we will have to put all of our output into a single WScript.Echo statement. The approach we will use in this program is to concatenate (add) all of the output into a single string and then output that string with WScript.Echo. The concatenation operator is the ampersand (&).
Remove the WScript.Echo in front of all of the individual message lines that produce output. Define a variable msgStr and assign all of the output as a continuous string to this variable. Use a WScript.Echo to output msgStr. Your revised script code for output should be as follows.
[image:]

10) Save your revised program <Ctrl>S and run it again from the console window using wscript.
This time the output should appear in a single pop-up window.
[image:]

Copy your revised PopUpWindow.vbs program from NotePad++ and paste it into the space specified for the PopUpWindow.vbs program in your lab-report document. Run your program again and when the pop-up window appears, make sure your mouse is within the popup and press <Alt><PrtSc> to capture the desktop output window. Paste this window into the space provided for the PopUpWindows.vbs run in your lab-report document.
Note: Some laptops require <Fn><Alt><PrtSc> to capture the active window.

Task 4: CmdArgs.vbs Script Demonstrating Command Line Arguments
1) Return to NotePad++. We are going to use the PopUpWindow.vbs program as a starting point for our last program. In the File menu, select Save As. Save your PopUpWindows.vbs script as CmdArgs.vbs. Change the programmer header of your new program as needed.
[image:]
2) Many scripts or programs use command-line arguments to receive user data. Command-line arguments are data entered at the end of the same command line that runs the script. Here’s an example of our script using command-line arguments.
cscript c:\comp230\CmdArgs.vbs ”Jane Doe” 35

The values “Jane Doe” and 35 are user inputs that will be passed to the script and assigned to the variables name and ageStr. Note that “Jane Doe” is in double quotes because it is string or text data and we want to assign it to a single variable. Without the double quotes, Jane and Doe would be considered two separate command-line arguments.
3) Make the following changes to your program. Notice the lines that are added BEFORE values are assigned to name and ageStr. Also replace the values “John Doe” and “50” for name and ageStr with the values shown below.
[image:]

4) Lines 7 through 16 have been added or (in the case of lines 15 and 16) modified. Lines 17 through 25 have not been changed although they now have different line numbers to the beginning of your program (just after the programmer header comments).
Note: Command-line arguments are managed by the WScript.Arguments object. Set this object to the name args so we can substitute args in place of WScript.Arguments. The next statement is an if statement that checks to see if you have entered the two required arguments. If you haven’t (args.count < 2), an error message is displayed, and after 5 seconds the program terminates using the WScript.Quit statement. If you have entered the two arguments, the if statement is bypassed and the argument values are assigned to name (args.item(0)) and ageStr (args.item(1)). args.item is an array where the first item is (0), the second item is (1).
5) Save your program (<Ctrl>S), open the Windows CLI (Command Prompt) and change directory to the C:\comp230 folder. Execute the program the first time without any arguments using cscript. You should get the error message shown below:

c:\comp230>cscript cmdargs.vbs
Microsoft (R) Windows Script Host Version 5.8
Copyright (C) Microsoft Corporation. All rights reserved.

You must enter the name and age as command line arguments!!

6) Execute it a second time with your own name in double quotes and your age. Note the double quotes are required if there are any spaces in the argument values.

c:\comp230>cscript cmdargs.vbs "Clark Kent" 25
Microsoft (R) Windows Script Host Version 5.8
Copyright (C) Microsoft Corporation. All rights reserved.

Your name is Clark Kent
Your age is 25
Your age in 10 years is35

Copy your program from NotePad++ and paste it into the space specified for the CmdArgs.vbs program in your lab-report document. Capture the Run using your name and age from the console window (using right-click/Mark, Select text with mouse and <Enter>. Now paste your Run into the space provided for the CmdArgs.vbs Run in your lab-report document.

Shutdown all virtual machines used in this lab, by using the power functions located in the Tools bar before proceeding to the next module. Alternatively, you can log out of the lab platform.

COMP230_Wk 2_ IPO_Lab	2	Revised 1213
image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image1.png

image2.png

