
Page 1 of 10

COMP 3331/9331: Computer Networks & Applications

Programming Assignment: Routing Performance Analysis

Due Date: Friday 24 Oct 2014, 11:59 pm (Week 13)

Change Log

a. Version 1.0 released on September 16th, 2014

NOTE: Please make sure that you read notes on plagiarism before commencing work on

this assignment. Despite our warnings, every session we detect several cases of plagiarism.

Please note that copying from past assignments (or outsourcing on web sites) gets reported

to us via various tools that we use and falls under plagiarism.

Assessment: 60 marks (towards the Practical component)

Goal: The purpose of this assignment is to gain insights into the performance of different

network-layer routing algorithms. Your task is to develop a program that will evaluate the

performance of 3 different routing protocols over a virtual circuit network (i.e. a network

with a connection-based network layer, unlike the Internet) as well as a virtual packet

network (like the connection-less network layer of the Internet).

Learning Objectives: On completing this assignment you will gain sufficient expertise

in the following skills:

 Understanding and developing routing protocols

 Performance analysis of some routing protocols over virtual circuit and virtual packet

networks

Specification:
You will implement the following program:

RoutingPerformance

 The RoutingPerformance program will accept the following command line arguments:

o NETWORK_SCHEME: this argument specifies the network type that will be

evaluated. You program should implement two different network types, called here

as virtual circuit network and virtual packet network. Accordingly, the argument will

take one of the following values: CIRCUIT and PACKET corresponding to those

network types, respectively.

o ROUTING_SCHEME: this specifies the routing scheme that will be evaluated. Your

program should implement 3 routing protocols, which are essentially variants of

Dijkstra’s algorithm, as explained later in the specification. This argument will take

on one of the following values: SHP, SDP and LLP corresponding to the 3 routing

protocols: Shortest Hop Path (SHP), Shortest Delay Path (SDP) and Least Loaded

Path (LLP), respectively.

COMP 3331/9331, 2014s2, Programming Assignment

Page 2 of 10

o TOPOLOGY_FILE: this file contains the network topology specification.

o WORKLOAD_FILE: this file contains the virtual connection requests in the

network.

o PACKET_RATE: this positive integer value shows the number of packets per

second which will be sent in each virtual connection.

 The network topology that will be used for the evaluation will be specified in the

TOPOLOGY_FILE (the second argument). We will be using both a virtual circuit

network and a virtual packet network to evaluate the performance of the routing

protocols. Note that a routing protocol is required in both networks to determine the

path between the source and destination of a virtual circuit during the connection.

The main difference between the virtual circuit network and virtual packet network is

how end-to-end path is determined. The former is similar to the circuit switching

networks and the path is determined only at the connection establishment phase and such

a path will be used for all packet transmission through the connection. In other words,

one virtual connection in the virtual circuit network follows the same virtual circuit
1
 for

transmitting all packets. However, a virtual connection in the virtual packet network uses

the routing protocol to determine the path for each packet independently. Thus, such

virtual connection needs to invoke the routing protocol N times, where N is the number

of packets transmitted through the connection. In other words, one virtual connection in

the virtual packet network has N virtual circuits for transmitting N packets.

 A simple example of a network topology specification for a network with 4 routers

(routers will be referred to as nodes in the rest of the specification), labelled A, B, C and

D is as follows:

A B 10 19

A C 15 20

B C 20 20

B D 30 70

C D 8 20

This example network topology has 5 links connection the 4 nodes as shown in the figure

below (Figure 1 on the next page). Each line in this file defines a point-to-point link. For

example, the first line specifies a link from node A to node B, with a one-way

propagation delay of 10 milliseconds and a capacity that can accommodate up to 19

simultaneous virtual circuits at any given time. All links are assumed to be bi-directional,

with identical propagation delay in both directions (hence, the ordering of the names of

the two endpoints of the point-to-point link does not matter, i.e. the first line in the

example above could have been replaced with “B A 10 19”). Further, each connection in

either virtual circuit network or virtual packet network is also assumed to be bi-

directional and consumes unit resource (i.e. a resource of 1). There will be at most one

direct link between any two nodes in the graph. You may assume that the topology will

form a connected graph i.e. there will be no isolated nodes. The first task for your

program is to read in the topology file and construct a suitable internal representation of

the network topology, using an appropriate data structure. You may want to consult

standard data structures textbooks for standard representations of undirected graphs,

which would be an appropriate way to model the network. You may assume that all node

names are single upper-case alphabetic characters (i.e., a maximum of 26 nodes from A

1
 Here we assume that a virtual circuit is a path suggested by a routing protocol for sending data between a

particular source and destination.

COMP 3331/9331, 2014s2, Programming Assignment

Page 3 of 10

to Z), all propagation delays d are positive integers (0 < d < 200) and expressed in

milliseconds, and all link capacities C are positive integers (0 < C < 100) and indicate

the number of virtual connections that can be supported by a link. A more complex

network topology, which you may use for testing your code is available on the

assignment webpage (topology.txt).

C

A

B

D

Figure 1: Topology for the above example

 The network is initially empty, i.e., there are no virtual circuits established. The virtual

circuit requests that arrive in the network will be specified in the virtual connection

requests in WORKLOAD_FILE (third argument), which is ordered by time. The next

step for your program is to read in the arriving virtual connection request workload (from

the file), one request at a time, in timestamp order, and attempt to establish the virtual

circuits in the network according to the routing algorithm in use (routing algorithms are

explained later). The virtual connection workload for the network is specified in a simple

four-column format as follows:

0.123456 A D 12.527453

7.249811 B C 48.129653

8.975344 B D 6.124743

10.915432 A C 106.724339

15.817634 B C 37.634569

Each line of this file describes one virtual connection request. The first column specifies

the time (in seconds) at which the connection is established. You may assume that time

starts at 0 seconds and that time values will be represented up to 6 decimal digits (i.e.

microseconds). The second column specifies the originator (source node) for the request,

and the third column specifies the recipient (destination node) for the request. The final

column specifies the time duration for which this virtual connection remains active for

sending the packets. As an example, the first line in the above file contains a connection

request that originated at time 0.123456 seconds for a virtual circuit to be established

from node A to node D. This request will be active for duration of 12.527453 seconds. A

more comprehensive virtual connection workload, which you may use for testing your

program, is available on the assignment webpage in the workload.txt file. (Note that, this

workload is consistent with the topology specified in topology.txt)

 We assume that all virtual connections have the same value for packet rate (fourth

argument), which determines the number of packets per second in a connection. For

example, if the packet rate value is 2 packets per second, the first virtual connection in

the above example will have 26 packets (rounded value of 2 * 12.527453), the first

packet starts at exactly the connection establishment time 0.123456 and finishes at

COMP 3331/9331, 2014s2, Programming Assignment

Page 4 of 10

0.123456+0.5, the second one starts at time 0.123456+0.5 and finishes at 0.123456+1,

…, the last packet starts at time 0.123456+12.5 and finishes at 0.123456+12.527453.

Clearly, for the case of virtual circuit network, you will create only one virtual circuit

using the routing protocol for sending all packets. In other words, you don’t need to

consider the packet rate as each virtual connection will be assigned to only one virtual

circuit with the same specification presented for the connection (including above four

features). However, in the case of the virtual packet network, you need to extract the

starting time and duration of each packet according to the packet rate value as you must

invoke the routing protocol to find an appropriate path for each packet. For example in

the first virtual connection of the above list and when the packet rate value is 2, we have

26 packets and accordingly we have 26 virtual circuits. The first virtual circuit starts at

time 0.123456 and finishes at 0.123456+0.5, the second one starts at time 0.123456+0.5

and finishes at 0.123456+1,…, the last virtual circuit starts at time 0.123456+12.5 and

finishes at 0.123456+12.527453.

 For each virtual circuit request in the above workload, your program must use the

specified routing algorithm to determine if the circuit can be established. To be more

specific, your program must select the “best” route depending on the routing protocol in

use (routing protocols are explained in the next bullet point) from the source to the

destination of the circuit and then determine if there is sufficient capacity along each link

of this end-to-end path to accommodate the circuit. Recall that each virtual circuit uses

unit capacity on each link. You may assume that the routing decision for each request

can be made in zero processing time. A virtual circuit that is successfully established

must be counted as such, and the network resources associated with that circuit marked

as "busy" for the duration of the circuit. For this purpose, assume that each circuit

consumes exactly one unit (i.e., one "circuit") of link capacity on each link. Of course,

recall that virtual circuits are bidirectional. When a circuit terminates, the resources (i.e.

unit capacity) along the individual links of the end-to-end path are released, and become

available for subsequent circuits that are established in the network. A circuit request that

is not routed successfully is said to be "blocked". A blocked request means that there is

no physical path currently available from the specified source to the specified destination

(according to the routing protocol in use). Such requests (packets) must be immediately

discarded from further consideration by your program. Your program must count and

report the number of blocked requests (packets). A list of performance metrics that your

program must measure and report is specified later in the specification.

 Your program should implement the following three routing protocols to determine the

least cost path between the source and destination. The first argument in the argument

list (as explained earlier) will determine which protocol should be used for a particular

run of your program. The algorithms are essentially variants of Dijkstra’s algorithm (i.e.

link-state routing) with each scheme using a different “cost” metric.

(1) Shortest Hop Path (SHP): This algorithm tries to find the shortest path currently

available from the source to the destination, where the length of a path refers to the

number of hops (i.e. links) traversed. In essence this is Dijkstra’s algorithm with the

cost of each link set to 1. Note that, this algorithm ignores the delay and load

associated with each link.

(2) Shortest Delay Path (SDP): This algorithm tries to find the shortest path currently

available from the source to the destination, where the length of the path refers to the

cumulative propagation delay for traversing the chosen links in the path. In other

COMP 3331/9331, 2014s2, Programming Assignment

Page 5 of 10

words, this is Dijktra’s algorithm with the cost of each link set to the propagation

delay. Recall that the network topology file specifies the delay along each link in the

network. Note that, this algorithm ignores the number of hops and the load associated

with each link.

(3) Least Loaded Path (LLP): This algorithm tries to find the least loaded path currently

available from the source to the destination, where the load of a path is defined to be

the maximum load on any link in the path. The load on a link is defined as the ratio

of its current number of active virtual circuits to the capacity, C, of that link for

carrying virtual circuits. Note that, this algorithm ignores the number of hops and the

delay associated with each link. There are two main differences between LLP and the

other two algorithms (SHP and SDP). Firstly, the path cost in LLP is not an additive

function, as is the case with the other two algorithms (in SHP and SDP the cost of the

path is simply the sum of the cost along each individual link that constitutes the

path). Secondly, link costs (i.e. the link load) change with time, whereas in both SHP

and SDP the link costs are static over the entire lifetime.

 For all the above algorithms, whenever ties occur, they should be broken arbitrarily. In

other words, if a particular routing algorithm determines that there are two or more paths

between the source and destination with exactly similar costs then the algorithm should

choose one of these paths randomly.

 Your program MUST NOT look for alternate paths between the source and destination

of a virtual circuit request in case the path selected by the routing protocol results in a

blocked request. Simply count this as a blocked request (packet) and move on to the next

one.

 Your program will need to keep track of time. You may assume that time starts at 0.

Recall that the workload file specifies the time at which each virtual connection request

originates in the network and the duration of each virtual circuit (provided it is

established). Clearly, in the case of virtual packet network, you must extract the starting

time and duration for each packet and then make a virtual circuit request per each packet.

Note that when the connection request is divided into the packets in the virtual packet

network, your program must be careful about the order of the starting time of the packets

of different connection requests. As discussed earlier the routing decision for each circuit

request can be processed in zero time. Remember to free up the resources dedicated for a

circuit once the duration of the circuit elapses.

 Your program should maintain the following statistics:

o The total number of virtual connection requests.

o The total number of packets.

o The number (and percentage) of successfully routed packets.

o The number (and percentage) of blocked packets.

o The average number of hops (i.e. links) consumed per successfully routed circuit.

o The average source-to-destination cumulative propagation delay per successfully

routed circuit.

Note that in the case of virtual circuit network, your program make one circuit for all

packets of a requested connection, thus the program should cascade the results of the

virtual circuit over all packets in the corresponding connection. For example, in this

case, if a connection has been blocked, it means that all packets of the connection are

blocked.

COMP 3331/9331, 2014s2, Programming Assignment

Page 6 of 10

 The following illustrates an example initiation of your program:
java RoutingPerformance CIRCUIT SHP topology.txt workload.txt (for

JAVA)

RoutingPerformance CIRCUIT SHP topology.txt workload.txt (for C)

 Once your program has read through the entire workload file and finished processing all

virtual circuit requests, it should output all of the above statistics to the terminal and then

exit. A sample output from one run of the program is as follows:

Your output format MUST be exactly same as the above sample output. You need only

to change the performance metrics values according to your program results. Also, the

maximum number of decimal places for real performance values must be set to 2.

Moreover, you MUST write the above output format in the standard output.

We will wait for reasonable amount of time (3 - 4 minutes) for your output to appear

(with the provided workload.txt file). If you observe that your program is taking longer

than 4 minutes to execute the workload file then please indicate this in your report so that

we know that your program is not in an infinite loop.

Additional Notes

 You may choose to work either individually or in a group of two. If you form a group,

please send an email with the names/student-id of your group members to the class

account (cs3331@cse.unsw.edu.au) by Friday, 26
th

 September 2014, 11:59 pm. We

neither are able to help you choose a group member nor would be accepting more than 2

people in a group. However, you are encouraged to use message board. Marking criteria

will remain the same. Unless advised otherwise, contribution from each member will be

considered equal. If there is any problem with group members not cooperating, this must

be reported to the LIC immediately as dealing with group problems post submission will

be hard to manage. Please keep a log of your contributions/meetings.

 Non-programming assignment is allowed as an exception to non-CSE and non-EE&T

students who do not have experience with programming (e.g: Mechatronics). Note that

non-CSE students are encouraged to attempt the programming assignment. Check details

about this on the alternate assignment webpage. You must send an email to class account

indicating that you are opting for non-programming assignment by Friday, 26
th

September 2014, 11:59 pm. If we DO NOT receive e-mail from such students, we will

assume that they have opted for the programming assignment. Students cannot change

their decision past the deadline.

total number of virtual circuit requests: 200

total number of packets: 4589

number of successfully routed packets: 3654

percentage of successfully routed packets: 79.63

number of blocked packets: 935

percentage of blocked packets: 20.37

average number of hops per circuit: 5.42

average cumulative propagation delay per circuit: 120.54

COMP 3331/9331, 2014s2, Programming Assignment

Page 7 of 10

 While you are encouraged to adopt good programming practices, your coding style is

NOT subject to marking.

 The programs will be tested on CSE Linux machines. So please make sure that your

program runs correctly on these machines. This is especially important if you plan to

develop and test the programs on your personal computers (which may possibly use a

different OS or version). We are unable to accommodate the request to have you

demonstrate it on your laptop/desktop machines. Please plan ahead for any porting

issues.

 Tips on how to get started:

o Focus first on making sure that your program can read in and model the network

topology. The 4-node example discussed earlier is a good one to start with.

o Next focus on getting ONE routing algorithm working. The Shortest Hop Path

(SHP) is the easiest one, since it entails implementing Dijkstra’s algorithm using a

link cost of 1 for each hop traversed. Spend a lot of time testing your Dijkstra’s

algorithm to make sure that it is working properly. This will definitely pay off in

the long run.

o The Shortest Delay Path (SDP) is a simple variant of SHP and will involve a

simple modification (i.e. changing the link cost) to your implementation of SHP.

The Least Loaded Path (LLP) will require reasonable modifications but is still

relatively easy to implement.

o Test your routing algorithm(s) with a SMALL network topology and a SMALL

virtual circuit workload file. Links with very low capacity (e.g. 1) are useful in

initial testing. Make sure that the routing is working, and that your program is able

to compute the required statistics.

o Extend your program for the virtual packet network case and repeat all tests for all

three routing algorithms.

o Once you are fairly confident that your program is working correctly for a small

topology, and then move on to the provided sample topology. It may be useful to

initially test out the workload file incrementally (e.g.: first 10 requests, first 50

requests, first 100 requests and so on).

 Language and Platform: You are free to use either C or C++ or JAVA or Python to

implement this assignment (you can choose only one of these languages for the entire

assignment, not a combination of them). Your assignment will be tested on the Linux

Platform. Make sure you develop your code under Linux (check the version on CSE

machines).

 Submission: We will inform you about the details of submission 1 week before the

deadline (check the notice board closer to submission date). You really need only one

file: RoutingPerformance.c (or RoutingPerformance.java). If you are using C and if

you are going to use any other files besides these two such as header files or other .c files

then you will have to submit a Makefile along with your code. This is because we need

to know how to resolve the dependencies among all the files that you have provided. If

you are using Java and have multiple files, a makefile will not be necessary if your

program doesn’t need any CLASPATH settings (javac *.java usually work here). In

addition you should submit a report, report.pdf (no more than 3 pages) including the

following 3 items:

COMP 3331/9331, 2014s2, Programming Assignment

Page 8 of 10

o An explanation on the data structure(s) that you have used for the internal

representation of the network topology.

o A tabulated summary of the comparison of the performance metrics for the 3

routing protocols over the virtual circuit network. This comparison MUST be

carried out using the provided topology and workload files (topology.txt and

workload.txt). Your table must contain 8 columns (one each for the 8 performance

metrics) and 6 rows (one each for the 3 routing protocols for two networks).

o An analysis of the results, i.e., where possible you MUST provide reasons for the

performance results that you observe. In particular comment on the reason behind

the differences in the following metrics for the 3 protocols: percentage of blocked

requests, average number of hops and the average propagation delay.

o Performance evaluation of the virtual packet network with respect to the packet

rate and different routing protocols. To this end, you need to collect the values of

three performance metrics percentage of successfully routed packets, average

number of hops per circuit, average cumulative propagation delay per circuit by

varying the packet rates in the range of 1 - 5 and changing the routing protocols

over the topology.txt and workload.txt files. Then, you will create three plots

corresponding to each performance metric. In each plot, the x-axis is the different

values of packet rates and the y-axis is the performance values. Also, in each plot

you draw three line charts corresponding to each routing protocol. Finally, try to

describe the plots and the reason of the results by one paragraph for each plot.

 Late Submission Penalty: Late penalty will be applied as follows:

o 1 day after deadline: 10% reduction

o 2 days after deadline: 20% reduction

o 3 days after deadline: 30% reduction

o 4 days after deadline: 40% reduction

o 5 or more days late: NOT accepted

NOTE: The above penalty is applied to your final total. For example, if you submit your

assignment 1 day late and your score on the assignment is 60, then your final mark will

be 60 – 6 (10% penalty) = 54.

 Plagiarism: You are to write all of the code for this assignment yourself. All source

codes are subject to strict checks for plagiarism, via highly sophisticated plagiarism

detection software. These checks may include comparison with available code from

Internet sites and assignments from previous semesters. In addition, each submission

will be checked against all other submissions of the current semester. Please note that

we take this matter quite seriously. The LIC will decide on appropriate penalty for

detected cases of plagiarism. The most likely penalty would be to reduce the assignment

mark to ZERO and reported to school plagiarism register. We are aware that a lot of

learning takes place in student conversations, and don't wish to discourage those.

However, it is important, for both those helping others and those being helped, not to

provide/accept any programming language code in writing, as this is apt to be used

exactly as is, and lead to plagiarism penalties for both the supplier and the copier of the

codes. Write something on a piece of paper, by all means, but tear it up/take it away

when the discussion is over.

 Forum Use: You are free to discuss (and are in fact strongly encouraged to do so) issues

relevant to the assignment on the course forum. However, refrain from posting large

code-fragments on the forum. Students will be heavily penalised for doing so.

COMP 3331/9331, 2014s2, Programming Assignment

Page 9 of 10

Sequence of Operation for Marking

The following shows the sequence of events that will be involved in marking your

assignment:

1) We will first test your program with the network topology and workload files that are

provided on the assignment webpage (topology.txt and workload.txt). All 3 routing

protocols and two networks will be tested.

2) We will repeat the tests for a different topology and associated workload file. Note that,

the format of the topology and workload files will be consistent with those provided on

the webpage.

3) Finally, your report will be marked.

Marking Guidelines:

The marking will consist of the following sequence of tests:

Test 1: Correct Compilation

Correct compilation of all files: 2 mark

Test 2: Shortest Hop Path (SHP) Test

We will first evaluate the SHP routing protocol for both networks. We will first verify the

performance for the provided topology and workload files and then test with a different

topology and associated workload: 12 marks

Test 3: Shortest Delay Path (SDP) Test

We will next evaluate the SDP routing protocol for both networks. The same topology and

workload files as in the SHP test will be used for this evaluation: 14 marks

Test 4: Least Loaded Path (LLP) Test

Next we will evaluate the LLP routing protocol for both networks. The same topology and

workload files as in the SHP test will be used for this evaluation: 18 marks

Test 5: Report

Your report is worth 14 marks. Your report will be evaluated as follows:

 Description of the data structure used to create the internal representation of the network

topology: 2 marks

 Tabulated comparison of the performance metrics of the 3 routing protocols for the

provided topology and workload files: 2 marks

 Explanation of the performance results observed: 2 marks

 Plots for performance evaluation of the virtual packet network: 4 marks

 Explanation of the plots: 4 marks

COMP 3331/9331, 2014s2, Programming Assignment

Page 10 of 10

IMPORTANT NOTE: We will not read through your code to evaluate your coding style,

etc. For assignments that fail to execute all of the above tests, we will be unable to award

you a substantial mark.

Consultation:

Please note that Mr. Mohsen Rezvani in-charge of this assignment and all queries should be

directed to him via cs3331@cse.unsw.edu.au with subject heading Assignment Query.

Additionally, Mr. Rezvani will also provide weekly Consultation. The consultation timing

and venue would be 4:00PM -5:00PM on Friday (from week 9 to week 13) and 4:00PM -

5:00PM on Tuesday (week 11 to week 13) in Room 508, Building K-17. The consultation

sessions will be started from Friday, 26
th

 September 2014.

