ELEC 3600 Electromagnetics: from wireless to photonic applications Department of Electronics and Computer Engineering, HKUST

Problem Set 8 (due May 9th, Monday in class)

- 1. A manufacturer produces a ferrite material with μ = 750 μ_0 , ϵ = 5 ϵ_0 , and σ = 10⁻⁶ S/m at 10 MHz.
 - a. Would you classify the material as lossless, lossy, or conduction?
 - b. Calculate β and λ .
 - c. Determine the phase difference between two points separated by 2m.
 - d. Find the intrinsic impedance.
- 2. A signal in air $(z \ge 0)$ with the electric field component

$$\mathbf{E}=10\,\sin(\omega t+3z)\,\mathbf{a}_{\mathbf{x}}\,\mathbf{V}/\mathbf{m}$$

hits normally the ocean surface at z=0. Assuming that the ocean surface is

smooth and that $\varepsilon = 80 \varepsilon_0$, $\mu = \mu_0$, $\sigma = 4$ mhos/m in ocean, determine

- a. ω
- b. The wavelength of the signal in air
- c. The loss tangent and intrinsic impedance of the ocean
- 3. In a non-magnetic region ($\mu = \mu_0$), it has

 $\mathbf{E} = 10\cos(10^9 \text{t-8x})\mathbf{a}_y + 10\sin(10^9 \text{t-8x})\mathbf{a}_z \text{ V/m}.$

Find

- a. Dielectric constant ε_r
- b. Corresponding magnetic field H
- c. Poynting vector S
- d. Polarization of the wave.

- 4. A 20 MHz uniform plane wave with $\mathbf{E}_{i} = \sin(\omega t + \beta x) \mathbf{a}_{y} + \cos(\omega t + \beta x) \mathbf{a}_{z}$ V/m exist in the region $x \ge 0$ having $\sigma = 0$, $\mu = 3\mu_{0}$, and $\varepsilon = 6\varepsilon_{0}$. At x = 0 the wave encounters free space. Determine
 - a. The phase constant in the region both x < 0 and $x \ge 0$.
 - b. The reflected and transmitted magnetic field.
- 5. A DC voltage generator with $V_g=10V$ and $Z_g=50\Omega$ is connected to a switch and a $Z_0=75 \Omega$ transmission line. An oscilloscope with 50 Ω input impedance is connected to the other end of the line. At t= 0, the switch is turned on. It takes 30 ns for the signal to travel from the generator to the oscilloscope.
 - a. Find the initial voltage V_0 at the sending end (near generator) of the line.
 - b. Find the reflection coefficients at the sending end and receiving end (near oscilloscope) of the line.
 - c. Sketch the voltage you would see the oscilloscope for $0 \le t \le 150$ ns.
 - d. Find the final voltage V_{∞} at the sending end.

