Software Requirements Specification (SRS)
Automotive Paint Defect Reporting System

Authors: Andrew Astakhov, Brandon Burt, Collin Skonieski, Jeremy Specht, Nick
Frederick
Customer: General Motors Paint Defect Client Analysts
Instructor: Dr. James Daly

1 Introduction

This introductory section describes the purpose of the document, scope of the project,
definition of the various terms used in the document, and the organization of the
following sections.

1.1 Purpose

This document will describe the full requirements of the Automotive Paint Defect
Reporting Software. It will describe constraints and a prototype for this system, including
an outline of how it will be used. This document is meant mainly for the team to ensure
that project requirements are satisfied, but also for the customer to review.

1.2 Scope

We will be developing the “Automotive Paint Defect Report System”. It is an application
that allows a user to create detailed reports about paint defects on automobiles using a
computer. Compared to the original report-writing method, this will save paper and
time. The goal is to make the entire report-writing process easier and more efficient. The
software will also store the reports in a database to be accessed or changed later.

1.3 Definitions, acronyms, and abbreviations

Defect: A flaw or imperfection in a vehicle’s paint job, which can have three possible
severity levels: 1, 5, and Special.

Paint Defect Audit: The examination of an individual vehicle for paint defects at a given
checkpoint. The location, type, and severity of any defects found are recorded.

Polish Deck: One of the checkpoints where the vehicles are audited for paint defects.
E-Coat: One of the checkpoints where the vehicles are audited for paint defects.

Prime Review: One of the checkpoints where the vehicles are audited for paint defects.

Quality Analysis Report: A detailed summary of the paint defects discovered at a
specific checkpoint on a given day, compiled with the results of selected individual audits
for that checkpoint.

Defect Analysis Report: A brief summary of the defects discovered at all checkpoints at
a specific GM plant on a given day.

DPU: Defects Per Unit.

Daily Report: A summary of the paint defect statistics for a single day at a given GM
plant. The report emphasizes defects per unit.

Weekly Report: A summary of how the paint defect statistics have changed over the
course of a week at a given GM plant. The report emphasizes defects per surface.

Monthly Report: A summary of how the paint defect statistics have changed over the
course of a month at a given GM plant. The report emphasizes finding potential trends
in the data.

Horizontal: Refers to defects on the roof or hood of the vehicle.

Vertical: Refers to defects on the side of the vehicle.

1.4 Organization

Including the introduction, there are seven sections in this document. The second section
contains an overall description of the project. The third section looks at the specific
requirements that the project must achieve. The fourth section contains models to help
visualize how the system will run from different perspectives. The fifth section gives
details about the prototype that will be developed and how to use it. The sixth section is a
short reference list for any other documents that may be used. The seventh section is a
simple contact information list for the developers of this project.

2 Overall Description

This section gives an in-depth description of the perspective and functions of the product,
the user characteristics, constraints, assumptions, dependencies and the apportioning of
requirements

2.1 Product Perspective

(—lﬁ

Parse Audit

Paint Defect Information

Paint Defect Audit

Checkpoint o
Inspector GM Database
Paint Defect Information
GM Emploves { Generate Report
Paint Defect Statistical Report

p
Figure 1: DFD Diagram of related systems

The Automotive Paint Defect Reporting Software is an interface for creating paint defect
audits and storing them on a database, as well as retrieving them from the database and
doing data analysis on those audits to create various reports.

The user will have a simple interface to choose between making different kinds of audits,
creating reports based on audits in the database, or searching for audits/reports on the
database.

2.2 Product Functions

The product will allow users to create detailed audits about paint defects by entering
information into the software at a computer. The audits may come from different
checkpoints in the assembly line. These audits will include a chart of the car showing the
location and type of defect, and numeric information about the number of defects found
such as the DPU.

Users will also be able to save these audits to a database, and later access, change, or
print the audit as desired. Users can also enter certain days, weeks, or month-long
periods and to get an automatically compiled report on all the audits that were made
during that time. These reports can also be stored on a database, and accessed and
printed later.

2.3 User Characteristics

The user of the system should be a client analyst that has experience with the analysis
and reporting of defects on General Motors vehicles. This includes knowledge of paint
defect terminology. The user should also have prior experience with the system. In the
case that the user has no experience with the system, they shall be given a training
session with a more experienced analyst.

2.4 Constraints

The saving of documents is constrained by the size of the database. If the database
reaches capacity, storing new reports will become impossible. Saving documents to the
database is also constrained by network connections. If the network cannot connect to
the database, the system will be unable to save the file on the database.

Additionally, this system is created for a set number of vehicles. In the event that one of
these plants began producing different vehicles, the system would potentially need to be
modified to handle the new type of vehicle.

2.5 Assumptions and Dependencies

For our system we will assume that the checkpoint users are knowledgeable about paint
defects. When inputting paint defect type/categorization data they will be entering this
information directly without the help of a drop down menu. We are also acting under
the assumption that the checkpoint consoles where the data is entered will be connected
to remote GM database servers.

2.6 Apportioning of Requirements

Based on negotiations with our customers, the following requirements were determined
to be addressed in future releases of the system:

e Ability to link between all GM automotive plants.

e Biometrics to log on to and use the system.

e Reports that can be distributed via the cloud to other locations.

e Reports based on other vehicles in the GM lineup.

A generalized report that contains data from both the QA report and Defect
Analysis.

A visually appealing and interactive way to select where defects are on the
vehicle.

An area where the type of defect is described and labeled in the reports.

3 Specific Requirements

When the software is run on a system, the first thing a user will see is a login page,
asking for a username and password. Authorized users will be able to log in using
a username and password.

1.1. Users will have different permission levels. Basic users will be able to use
all the features of the software, administrative users will be able to create
and delete basic users, and a developer user will be a single account that
can create and delete administrative users.

Once logged in, a user can then choose to create several kinds of audits.

2.1. These include Paint Defect Audits for each of the checkpoints, Polish,
E-deck, and Prime.

2.2. These audits can be saved and stored on a database, which will record the
user submitting the audit and the time it was submitted. These can be
viewed and edited later by any user

Users will be able to generate a daily/weekly/monthly report using all the audits

logged on a certain day/week/month

3.1. Reports will be compiled from audits on the day/week/month entered by
the user

3.2. Users can submit the reports to a database. The stored report will record
the inputted information, as well as the user’s name and date of the report.

3.3. Users can later search and find these reports and open them again.

Users can print reports out

4 Modeling Requirements

Wisual Pamdigm St | Jerem pids

Checkpoint Inspector

Administrator

GM Analyst

Figure 2: Use Case Diagram

This use case diagram demonstrates how users will need to log in, satisfying requirement
1. For requirement 2, the use case diagram shows checkpoint inspectors can create
audits (which will be stored). For requirement 3, the use case diagram shows users (GM
Analysts) can make reports, and then store them and access it later. For requirement 4,
the use case diagram shows how GM analysts can print the reports.

==SeveniyLevel==

WeeklyReport

+ duration = "1 week”

DailyReport

+ duration = "1 day”

Extends

Iy

DefectAnalysisReport

QualityAnalysisReport

+day: DateTime

+ day: DateTime

Extends

Extends

Report

+ generate(): File
+ openFile(): File
+ searchDB(day: DateTime,

plant = myPlant,
checkpoint: Checkpoint)

- PaintDefectAudit(]
0.
reports
1+fr plant
Plant

SL_1
SL_5
SL_Special
1/severityLevel
<<struct>>» -
==| pcation==> Defect <<Checkpoint=>
1 1
; PolishDeck
Horizontal . -
Vertical location *day: DateTime checkpoint ECoat RiCheckpoim
+ description: String PrimeReview]
1
defects | 1.7 checkpoint
audit 1
PaintDefectAudit
+ day: DateTime xl;_aud\t
0. / audits
vehicle
database
<<structs>
1 Vehicle
DefectAuditDatabase +make: String
+method(type): type +model: String
. vehicles
1 \ + color: String
defectAuditDatabase
+year: DateTime 0.*
+ VIN: String
¢
<<siruct=» User H System
Permissions - users 1 -
1 + usemame: String ___— +now: DateTime
+ canCreateReporis: bool 0.1 —cysteminUse
permissions + password: HashedString ractiveUser

+ canViewReports: bool
+ canEditReports: bool
+ canManageUsers: bool

+ canManagePermissions: bool

Extends

DeveloperAdmin

permissions = fullPermissions

canEnterAudits = True
canEditAudits = True
canCreateReports = True
canViewReports = True
canManagelsers = True

fullPermissions:Permissions

caniManagePersmissions = True

+ searchDEB(day: DateTime,
plant: Plant,

checkpoint: Checkpoint)
- PaintDefectAudit(]

e name: String

+ location: Location

+ searchDB(day: DateTime,

plant = this,
checkpoint: Checkpoint)
- PaintDefectAudit[]
ReportDatabase ’4
5
—| + getReporiFile(Report): File
reportDatabase

MonthlyReport

+ duration = "1 month”

Extends Extends

ChangeQverTimeReport

+ startDay: DateTime

+ duration: DateTime

Extends

0.1

openReport

Q

GUI

+ eventListener(UIEvent): void
- enterAudit(): void

- editAudit(): void

- userLogin{): void

- userLogout(): void

- managelUsers(): void

- createReport(): void

- viewReport(): void

- managePermissions(): void

- exit(): void

GUIJ 1

Figure 3: Class Diagram

Object Name

Description Datatype/
return type

System (class)

Central controller for entire system

Now (attr.)

Tracks current time datetime

searchDB (method)

Method to search audit database for audits | paintdefectaudit(]

User (class)

Represents each user

Username (attr.)

User’s unique name string

Password (attr.)

User’s password Hashedstring

Permissions (struct)

Keeps track of what user is allowed to do

canCreateReports (attr.)

Tracks if user is allowed to create reports bool

canViewReports (attr.) Tracks if user is allowed to view reports bool
canEditReports(attr.) Tracks if user is allowed to edit reports bool
canManagerUsers(attr.) Tracks if user can manage other users bool
canManagePermissions Tracks if user can manage other user bool
(attr.) permissions

DeveloperAdmin (class)

Special user who can manage others but cannot be managed by a
others, extends user

GUI (class)

Class that manages the view users see

eventListener (method)

Deals with U.I. elements, what the user clicks

enterAudit(method) Method for user to create a new audit

editAudit(method) Method for editing an existing audit

userLogin(method) Method for dealing with users logging in
userLogout(method) Method for signing users out

manageUsers(method) Method allowing users with permissions to edit other users
createReport(method) Method for user to create new reports

viewReport(method)

Method to display existing reports

managePermissions Method for allowing users with correct permissions to change
(method) other user permissions, except for DeveloperAdmin user
exit(method) Method for closing down the program safely

ReportDatabase (class)

Class that manages connection to database holding reports

getReportFile (method) Method for retrieving reports from DB File

Report (class) Class representing a report, meant to be extended

generate(method) Generates report file based on audits File

openFile(method) Opens the file containing the report data File

searchDB(method) Used by generate to get audits paintdefectaudit[]

?(ifec;AnalysisReport Extended Report class that represents a defect analysis report
class

QualityAnalysisReport
(class)

Extended Report class that represents a quality analysis report

ChangeOverTimeReport | Extended Report class that is meant to be extended further
(class)
DailyReport(class) Extended ChangeOverTimeReport representing a daily report
WeeklyReport(class) Extended ChangeOverTimeReport representing a weekly report
MonthlyReport(class) Extended ChangeOverTimeReport representing a monthly report
DefectAuditDatabase Class that manages connection to database holding audits
(class)
searchDB (method) Method that finds audits on the database paintdefectaudit[]
PaintDefectAudit(class) | Class representing an audit
Day (attr.) Attribute describing the day an audit was datetime

made
Defect(class) Class representing a single defect
Day (attr.) Attribute describing when defect was datetime

found
Description (attr.) Short description of the defect string
Severity (attr.) Attribute describing how severe defect is severityLevel

Location (attr.)

Attribute describing where defect is on car

Location

Checkpoint (attr.)

Attribute describing which checkpoint the
defect was found on

checkpoint

Plant (class) Class representing one of the plants/factory where system runs
Name (attr.) Attribute describing name of the plant string

Location (attr.) Attribute describing location of the plant location
searchDB (method) Method that finds audits on the database paintdefectaudit(]

Figure 4: Data Dictionary

- Gur

+—

1: userLogond)

1.1: createReport()

1.2: viewRepaort()

2! userLogout()

Figure 5: Sequence Diagram - Scenario 1

-G PaintDefect
Audit
| |
1: userLogon() I
|
1.1: enterfudit) |
2 userLogout() I
|
| |

Figure 6: Sequence Diagram - Scenario 2

1: userLogond)

1o = L=

—

2 userLogout()

1.1: managellsers()

B
[

Figure 7: Sequence Diagram - Scenario 3

1: userLogond)

o = GLipe

F—

2! userLogout()

1.1: managePeamissions()

Figure 8: Sequence Diagram - Scenario 4

5> Prototype

The prototype will show a complete use of the system. The user will be able to enter the
information about the defects found on the vehicle, and the system will then compile the
information into low-level paint defect reports.

5.1 How to Run Prototype

The prototype is a GUI utilizing C++, and QT Creator. The reports are generated using R
statistical software. The first prototype is only the interface of the system, and is not
executable.

Figure 9: Main Window of the Paint Defect System.

e Audit Button: Creates a new dialog screen (Figure 2) that the user inputs
information into.

Drop Down Box 1: Contains the options for which GM Plant to create the report of.
Drop Down Box 2: Contains the options for which time option to create report of.
Drop Down Box 3: Contains the options for which report to create.

Generate Report Button: Generates the report with the selected options

Hood

Vehidle -
Sevl
Plant 5
Sevw 5
Right Vertical Special

Sevl Roof

Sev s Sevl |

Special Sev 5
Special

Left Vertical

: Deck

Sev 1 | :

LE S5ev 1

Sevs | L

- SEW

Special | e
Specia

cans

Figure 10: Information Input Window.

Vehicle: Contains the different vehicles to input information for.

Plant: Contains the plant that the information is being inputted with respect to.
Right Vertical: The right side of the vehicle.

Left Vertical: The left side of the vehicle.

Hood: The hood of the vehicle.

Roof: The roof of the vehicle.

Deck: The back deck of the vehicle.

Sev 1: The number of Sev 1 defects.

Sev 5: The number of Sev 5 defects.

Special: The number of Special defects.

5.2 Sample Scenarios
The following scenario is of a user generating a Defect Analysis Summary.

The user will select All Automotive plants, Weekly summary, and Defect Analysis
Summary.

All -
Weekly -

Defect Analysis Summary -

Audit

Generate Report

Figure 11: Sample Scenario

The user will then click Generate Report and the outputted report will contain the
information in figure 2. This report contains the Analyst’s name that generated the
report, the plant(s) that were included, and the time frame of the report. Also included is
a statistical summary of the number of defects and units, and the defects per unit.

The final piece of the report is the Location statistics. The location statistics include each
location, the total number of defects, and the average defects per unit.

Defect Analysis Summary

Analyst: Jim Whaddaname

Plant: All

Time: Weekly

Summary:

of Defects 221

of Units: 70

Defects per Unit 3.18

Defect Location Defect Total Defects per Unit
Right Vertical 45 B4
Left Vertical 20 28
Roof 67 95
Hood 39 55
Deck 50 72

Figure 12: Defect Analysis Summary

6 References
D. Thakore and S. Biswas, “Routing with Persistent Link Modeling in Intermittently
Connected Wireless Networks,” Proceedings of IEEE Military Communication, Atlantic

City, October 2005.

Burt, Brandon. “Automotive Paint Defect Analysis”. November, 2017.
https://webdev.cse.msu.edu/~burtbra3/cse435/

7 Point of Contact

For further information regarding this document and project, please contact Dr. J. Daly
at Michigan State University (dalyjame at msu dot edu).

