COSC1076/2207 APT - Assignment#2 Specification (CS&IT, RMIT University)
Course Leader/Lecturer: Xiaodong Li Head Tutor: Paul Miller

SECTION 2: ASSIGNMENT #2 INFORMATION

You have been approached by a company to create a front-end system for a vending machine
written in C. The vending machine serves all kinds of pastry treats. The company’s name is
Penelope’s Pastry Delights and as such, the executable you are creating will be called “ppd”

Note: for this assignment you may use either gcc or clang which are both installed on the
coreteaching machines. Many developers prefer to use clang as they feel that it provides more
friendly error messages. clang accepts the same arguments as gcc so there should not be any
problem there.

In this assignment you are to implement an application that will perform the above tasks as a
single user model — which will then be used as a prototype for how the new system would look.

You will need to demonstrate your understanding and programming ability, with respect to more
advanced C programming principles. The concepts covered include:

* Command line arguments.

* File handling.

* Dynamic memory allocation and linked lists.
* Modularisation and multi-file programs.

* Makefiles.

* Function pointers

* All concepts covered in Assignment #1.

Your assignment must compile and execute cleanly on the coreteaching servers in the fashion
below:

Compile:

[s3344949@csitprdapl2 ~]1$ make

Execute:

[s3344949@Qcsitprdap02 ~1$./ppd [command line args]

Startup Code:
The startup source code for ppd will be provided on the shared drive:

/home/el9/E70949/shared/assignment-2/a2-skeleton.zip

(that is e-elle-9, not e-one-9)

Page 1 of 12

COSC1076/2207 APT - Assignment#2 Specification (CS&IT, RMIT University)
Course Leader/Lecturer: Xiaodong Li Head Tutor: Paul Miller

You are expected to be submit a modularized solution with multiple source files for this
assignment. This includes creating your own data structures and .c and .h modules.

You are not permitted to alter function prototypes. A function prototype includes the name,
return type and parameter list of a function.

e You are expected to use ALL given data structures and and functions.
e You may create typedefs for the provided data structures but you may not alter the
function prototypes or the predefined types.

Permission to change the startup code is not normally given, unless there is very good reason
(i.e., a bug). You will need to build upon the code that is provided instead. If you have any
concerns about the startup code, please post your query to the Blackboard discussion forum.

Functional Requirements

This section describes in detail all functional requirements of Assignment #2. A rough indication
of the number of marks for each requirement is provided. You should make a conscientious
effort to write your program in a way that is capable of replicating the functionalities of the ppd
program, described in the requirements below.

A sample executable will be available at the beginning of week 8. You are to model your
solution on this sample executable as we will mark parts of your assignment with a script.

Requirement #1 Command-line arguments (2 marks)

A user of your program must be able to execute it by passing in the names of two data files that
the system is to use. You need to check that exactly 3 command line arguments are entered.

Your program will be run using these command line arguments:

[s3344949@csitprdap02 ~]1$./ppd <itemsfile> <coinsfile>
For example:
[s3344949Qcsitprdapl02 ~1$./ppd items.dat coins.dat

Requirement #2 Load Data (8 marks)

Your program needs to be populated with the data provided in the 2 data files whose names are
conveyed via the command line. You will need to tokenize this data in order to load it into the
system. Use the structure definitions provided in the startup code to store your system data. As
part of this requirement you need ensure that the specified files are valid (that is, they exist and
the data contained in them matches the specification for this assignment). You need to abort the
program and provide a suitable error message if this is not the case.

Page 2 of 12

COSC1076/2207 APT - Assignment#2 Specification (CS&IT, RMIT University)
Course Leader/Lecturer: Xiaodong Li Head Tutor: Paul Miller

Item File Format:
[TtemID] | [ItemName] | [ItemDesc] | [Price] | [NumberOnHand]

Please note that the Price is stored as numbers delimited by the ‘.”. The number to the left of the
*.” is the dollars and the number to the right will be the cents, for example:

I0001|Meat Pie|Yummy Beef in Gravy surrounded by pastry|3.50]50

Where the 3 represents the dollar component and the 50 represents the cents component of the
price. A missing ‘.’ from the price should be considered a data error.

Money data file format:
[denomination], [quantity]

That is, there will be a row for each value of money that exists and the system will have an
amount of each denomination. For example:

1000, 3
500, 4
200,20
100, 30
50,5
20,3
10,40
5,20

This means that the system currently has 3 x 10 dollar notes, 4 x 5 dollar notes, 2- x 2 dollar
coins, etc. Note that the above denominations are the only valid denominations for your vending
machine. The vending machine does not accept $20 or $50 notes. A valid file will always contain
exactly 8 denominations. If you wanted to initialise the vending machine with no change then the
valid way to do that would be:

1000,0
500,0
200,0
100,0
50,0
20,0
10,0
5,0

Page 3 of 12

COSC1076/2207 APT - Assignment#2 Specification (CS&IT, RMIT University)
Course Leader/Lecturer: Xiaodong Li Head Tutor: Paul Miller

Please note that you cannot assume that the data contained in these files are valid. Some
examples (this is not a complete list) might be, there may be lines with too many or too few
fields, and the data in each field may not be of the correct type, range and/or length.

Sample (valid) data files have been provided with the startup code. Make sure that your program
works with at least these files. We will also be testing your program with invalid data in the data
files.

We recommend that you get your program working for the (valid) provided data files first. Then
spend any remaining time on your assignment testing for invalid files after you have completed
most/all of the remainder of the assignment.

Requirement #3 Implement Main Menu Structure (6 marks)
The main menu data structure is to be implemented as an array of struct menu_item.

A menu_item is defined as follows:

struct menu item
{

char name[MENU NAME LEN+1];

BOOLEAN (*function) (struct ppd system*);
}i

Where name is the text to be displayed for a menu item, eg: “Display Items” and functionis
the function that implements that option which in this case would be

BOOLEAN display items (struct ppd system*). Your task in this requirement is to
implement the function init menu (struct menu item* menu items) which will
initialise the menu array. The elements of the menu_items array will be as specified in the next
requirement. Please note that you are expected to initialise the code in such a way that the code
will be easy to maintain. Do not hard code values, and do not use magic numbers for array
indexes etc. You are expected to use good coding practices at all times. Do not hardcode array
indexes - you are expected to write code that is maintainable which in this case means
initialization in a loop.

It is recommended that you use a typedef in this section to simplify and make your code
more readable.

Note: All of these functions must return a BOOLEAN for consistency with the interface
however in some cases, eg: display items, you will always return true. You should nevertheless
be checking the return values from all function calls - in fact a consistent approach in this regard
makes for a simpler implementation.

Page 4 of 12

COSC1076/2207 APT - Assignment#2 Specification (CS&IT, RMIT University)
Course Leader/Lecturer: Xiaodong Li Head Tutor: Paul Miller

Requirement #4 Display Main Menu (4 marks)

Your program must display an interactive menu displaying 9 options. Your menu should look
like this:

Main Menu:

1. Display Items

2. Purchase Items

3. Save and Exit
Administrator-Only Menu:
. Add Item
. Remove Item
. Display Coins
. Reset Stock
. Reset Coins
. Abort Program
Select your option (1-9):

O O 1 O U1

Your program must print out the above options which will be stored in the menu_items array and
then allow the user to select these options by typing the number and hitting enter. Upon selection
of an option, appropriate function will be called via the function pointer of the item selected.

Upon completion of all options except “Exit”, the user is returned to the main menu. You can
assume that customers can only see the first two menu options, and the administrator can see all
of them.

Under No Circumstances are you to password protect the administrator functions of this
program. If the marker cannot access parts of your application, they cannot mark it and

you will get zero for those components.

The behavior of these menu options is described in requirements 5-10.

Page 5 of 12

COSC1076/2207 APT - Assignment#2 Specification (CS&IT, RMIT University)
Course Leader/Lecturer: Xiaodong Li Head Tutor: Paul Miller

Requirement #5 Display Items (4 marks)

This option allows the user to request a display of the items available for purchase. This is the
data loaded into the linked list in the requirement 2. This requirement should behave as follows -
from the main menu, the user selects 1 and data should be displayed in the following format:

Items Menu

ID | Name |Available |Price
I0001 |Meat Pie |12 |$ 3.50
10002 |Apple Pie | 0 |$ 3.50
I0003 |Lemon Cheesecake | 4 [S 4.00
I0004 |Lemon Meringue Pie | 3 |$ 3.00
I0005 |Lemon Tart | 5 S 3.75

Requirement #6 Purchase Item (8 marks)

This option allows the user to purchase an item from the menu. This function is called from the
main menu when the user has finally decided to purchase an item. This function allows the user
to pay for their item by collecting money from them, and adjusting balances within the system as
appropriate. Change is then given back to the customer, if appropriate. The number of items on
hand should also be deducted. You should not allow an item to be purchased if there are 0 or less
of that item on hand.

For example:
From the main menu the user selects 2
Purchase Item

Please enter the id of the item you wish to purchase: I0001

You have selected “Meat Pie - Yummy Beef in Gravy surrounded by
pastry”. This will cost you $3.50.
Please hand over the money - type in the value of each note/coin

in cents.

Press enter or ctrl-d on a new line to cancel this purchase:
You still need to give us $3.50: 200

You still need to give us $1.50: 300

Error: $3.00 is not a valid denomination of money.

You still need to give us $1.50: 500

Thank you. Here is your coke, and your change of $3.50: $2 $1
50c

Please come again soon.

After which the user would be returned to the main menu.

Page 6 of 12

COSC1076/2207 APT - Assignment#2 Specification (CS&IT, RMIT University)
Course Leader/Lecturer: Xiaodong Li Head Tutor: Paul Miller

When refunding money, you must display each note or coin separately used in the refund and
you must ensure that prior to the sale that there is sufficient denominations in the system so that
the customer is given the correct change. You must also subtract these coins from the coins array
if a sale can take place. Note that coins entered to pay for an item can form part of the change
that is given to the customer if that is required to give the customer the smallest amount of
change possible. If pdd cannot give correct change then the sale should not occur, and your
program should display an appropriate message explaining why.

If the user presses enter or ctrl-d on a new line, refund all the coins/notes they have entered so far
and return them to the main menu.

Requirement #7 Save and Exit (5 marks)

You must save all data to the data files that were provided on the command line when the
program loaded up. When the saving is completed, you must have the program exit. The
specifications mentioned for each file must be maintained and the program must be able to load
up your files as easily as it loaded up the files that we have provided you with. Also, at this point,
once you have implemented dynamic memory allocation, you must free all memory allocated
and exit the program. A program which does everything but exit the program will still lose
marks, as much as a program that does not implement any other requirement.

Requirement #8 Add Item (6 marks)

This option adds an item to the system. When the user selects this option, the system should
generate the next available item id and associate that with this item. The user should then be
prompted for the Name and Description and Price (a valid amount of money in dollars and
cents). The item should then be allocated the default "on hand" value specified in the startup
code. The new item id shall have an ‘I’ prepended to it and will be 5 characters long. For
example:

This new meal item will have the Item id of I0006.

Enter the item name: Baklava

Enter the item description: rich, sweet pastry made of layers of
filo filled with chopped nuts and sweetened and held together
with syrup or honey.

Enter the price for this item: 8.00

This item “Baklava - rich, sweet pastry made of layers of filo
filled with chopped nuts and sweetened and held together with
syrup or honey.” has now been added to the menu.

Please note that the price entered for a item must have a dollars and a cents component as above.

Page 7 of 12

COSC1076/2207 APT - Assignment#2 Specification (CS&IT, RMIT University)
Course Leader/Lecturer: Xiaodong Li Head Tutor: Paul Miller

Requirement #9 Remove Item (4 marks)
Remove an item from a category and delete it from the system, including free memory that is no
longer being used.

Example:

Enter the item id of the item to remove from the menu: I0001

“"I0001 - Meat Pie - Yummy Beef in Gravy surrounded by pastry”
has been removed from the system.

Requirement #10 "Reset Stock Count” (2 marks)
This option will require you to iterate over every stock in the list and set its 'on hand' count to the
default value specified in the startup code.

You should display a message once this is done such as “All stock has been reset to the default
level of X” where X is the default stock level specified in the startup code.

Requirement #11 "Reset Coin Count" (2 marks)

This option will require you to iterate over every coin in the coin list and set its 'count' to the
default value specified in the startup code.

You should display a message once this is done such as “All coins have been reset to the default
level of X where X is the default amount of coins specified in the startup code.

Requirement 12 "Display Coins" (3 marks)
This option will require you to display the coins as follows. In particular, the counts of coins
should be correctly aligned, and they should be sorted from lowest to highest value:

Coins Summary

Denomination | Count
5 cents | 20
10 cents | 40
20 cents | 3
50 cents | 5
1 dollar | 30
2 dollar | 20
5 dollar | 4
10 dollar | 3

Page 8 of 12

COSC1076/2207 APT - Assignment#2 Specification (CS&IT, RMIT University)
Course Leader/Lecturer: Xiaodong Li Head Tutor: Paul Miller

Requirement #13 “Abort” (2 marks)

This option should terminate your program. All program data will be lost. You should also be
freeing memory at this point as well.

Requirement #14 Return to menu functionality (3 marks)

Your program should allow the user to return to the main menu at any point during these

options. The user can do this by either hitting enter or pressing ctrl-d on an empty line. If the user
is in the middle of a transaction, that transaction should be cancelled.

Requirement #15 Makefile (4 marks)

Your program must be compilable using a makefile. All compile commands must include the
“-ansi -Wall -pedantic” compile options and compile cleanly with these options. Your makefile
needs to compile your program incrementally, i.e., use object files as an intermediate form of
compilation.

Also include a target called “clean” that deletes unnecessary files from your working directory
such as object files, executable files, core dump files, etc. This directive should only be executed
when the user types “make clean” at the command prompt.

Have a look at the courseware on blackboard for examples of makefiles. There are also many
examples of makefiles provided in the lecture material.

Requirement #16 Memory leaks and abuses (6 marks)

The startup code requires the use of dynamic memory allocation. Therefore, you will need to
check that your program does not contain memory leaks. Use the “valgrind --leak-check=full
--show-reachable=yes <command> <arguments>" to check for memory leaks. Marks will only
be awarded for this requirement if the feedback valgrind provides reports zero memory leaks and
no other memory related problems.

Another common problem in is memory abuses. These are inappropriate accesses such as
reading from uninitialized memory, writing to memory addresses you should not have access to
and conditional statements that depend on uninitialized values. You can test for these again by
using valgrind:

valgrind --track-origins=yes <command> <arguments>

Page 9 of 12

COSC1076/2207 APT - Assignment#2 Specification (CS&IT, RMIT University)
Course Leader/Lecturer: Xiaodong Li Head Tutor: Paul Miller

Requirement #18 Proper Use of an ADT (6 marks)

In this assignment, you are implementing an Abstract data type — a list. One list is implemented
as an array and the other list is implemented using a linked list. For this requirement you will
need to propose a list of interface functions for each list and implement these. All references to
these types should be via these interface functions.

Requirement #19 General requirements (15 marks)

You must read the “Functional Abstraction” “Buffer Handling” , “Input Validation” and “Coding
Conventions and Practices” requirements of the “COSC1076 Advanced Programming
Techniques General Assignment Information” document. These requirements are going to be
weighted at 4 marks, 3 marks , 4 marks and 4 marks respectively.

Requirement #20 Assignment Demonstration 1 (10 marks)

You are required to attend an assignment demonstration in week 10 or 11. You will be required
to demonstrate requirements 5,6, 8 and 9 in this demonstration. Please note that this includes
implementation of any requirements that these options depend upon. After you have
demonstrated your program working you will need to submit your files to weblearn. You will be

required to compile and run your program on saturn, jupiter or titan. Please attend your regular
scheduled lab.

Submission Information

Submission date/time:

Submission details for Assignment #1 are as follows. Note that late submissions attract a
marking deduction of 10% per day for the first 5 days. After this time, a 100% deduction is
applied.

Category Due Date/Time Penalty

On Time Sunday 18" Oct, 9.30 pm Not Applicable

1 Day Late Monday 19" Oct, 9.30 pm 10% of total available
marks

2 Days Late Tuesday 20" Oct, 9.30 pm 20% of total available
marks

3 Days Late Wednesday 21* Oct, 9.30 pm 30% of total available
marks

4 Days Late Thursday 22™ Oct, 9.30 pm 40% of total available
marks

5 Days Late Friday 23™ Oct, 9.30 pm 50% of total available
marks

6 or more Days Late Not Accepted 100% of total available
marks

Page 10 of 12

COSC1076/2207 APT - Assignment#2 Specification (CS&IT, RMIT University)
Course Leader/Lecturer: Xiaodong Li Head Tutor: Paul Miller

Submission Content

For assignment #2, you need to submit at least the following files:

pdd_main.c

This file will contain your main function.

ppd_main.h

Header file for ppd_main.h

pdd_menu.c

Contains code for the initialisation and display of the menu

pdd_menu.h

Header file for ppd _menu.c.

pdd_options.c

This file contains functions for each of the 8§ major menu options.

pdd_options.h

Header file for ppd_options.c.

pdd_utility.c

This file will contain additional code for the running of your program. For example, this can
include your own functions that help you collect and validate user input. It will also contain
functions to load the data files and initialize your system to a safe state.

pdd_utility.h

Header file for ppd_utility.c.

pdd_stock.c

This file will contain the interface functions you create to manage the linked list of stock
pdd_stock.h

Header file for pdd_stock.c that contains the definition of the linked list data structures.
pdd_coins.c

This file will contain any additional functions you create to manage the collection of coins.
pdd_coins.h

Header file for pdd_coins.c that contains the definition of the coin struct.

Makefile

This file will compile your program in an incremental fashion.

pdd_readme

This file will contain important additional information about your program that you wish your
marker to see. Examples include incomplete functionality, bugs, assumptions, and so on.

You will need to ask about any assumptions you want to make in the Blackboard discussion
forum first before you make them.

Page 11 of 12

COSC1076/2207 APT - Assignment#2 Specification (CS&IT, RMIT University)
Course Leader/Lecturer: Xiaodong Li Head Tutor: Paul Miller

Submission instructions:
e C(Create a zip archive using the following command on the server:

[€70949Qcsitprdap02 ~]1S$ make archive
o This command would generate a zip file named “username-a2.zip” with your nds

username substituted for “username”.
e Submit the archive to weblearn, which is accessible via the learning hub.

Page 12 of 12

