
UMUC

CMSC 350 Project 3

1. Specification

Design, write and test a program that performs a sort by using a binary search tree. The program should be able to
sort lists of integers or lists of fractions in either ascending or descending order. One set of radio buttons should be
used to determine whether the lists contain integers or fractions and a second set should be used to specify the sort
order.
The main class P3GUI should create the Swing based GUI shown below. The GUI must be generated by code that you
write. You may not use a drag-and-drop GUI generator.

Pressing the Perform Sort button should cause all the numbers in the original list to be added to a binary search tree.
Then, an inorder traversal of the tree should be performed to generate the list in sorted order and that list should
then be displayed in the Sorted List text field.

In addition to the main class that defines the GUI, you should have a generic class for the binary search tree. That
class needs a method to insert a new value in the tree and a method that performs an inorder tree traversal that
generates and returns a string that contains the tree elements in sorted order. The insert method does not need to
rebalance the tree if it becomes unbalanced. It should allow duplicate entries and it must be written using recursion.
Other methods may be defined if needed.

The third class required for this project is one that defines fractions. It should have a constructor that accepts a
string representation of a fraction and a toString method. It must implement the Comparable interface, which
means a compareTo method is also required.

A second example of a run of this program is shown below that sorts fractions in descending order:

Note that fractions are to be written with a slash separating the numerator and denominator with no spaces on
either side of the slash. Spaces should be used to separate the fractions.

The only error checking required of this program is to check for nonnumeric input or improperly formatted fractions
such as 3/4/8. A nonnumeric input should cause a NumberFormatException to be thrown. A malformed
fraction should cause a custom exception MalformedFractionException to be thrown. The main class must
catch these exceptions and display an appropriate error message as shown below for

NumberFormatException (for MalformedFractionException the displayed message should be
“Malformed Fraction”).

Your program should compile without errors.

The Google recommended Java style guide (https://google.github.io/styleguide/javaguide.html) should be used to
format and document your code. Specifically, the following style guide attributes should be addressed: header
comments include filename, author, date and brief purpose of the program; In-line comments used to describe
major functionality of the code; the meaning and the role of variables and constants are indicated as code
comments; meaningful variable names and prompts applied; class names are written in UpperCamelCase; variable
names are written in lowerCamelCase; constant names are in written in All Capitals; braces use K&R style.

In addition the following design constraints should be followed: declare all instance variables private; avoid the
duplication of code.

2. Submission requirements

Submit the following to the Project 3 assignment area no later than the due date listed in your LEO classroom.

1. All .java source files (no other file types should be submitted). The source code should use Java code conventions
and appropriate code layout (white space management and indents) and comments. All submitted files may be
included in a .zip file.

2. The solution description document P3SolutionDescription (.pdf or .doc / .docx) containing the following:
(1) Assumptions, main design decisions, error handling;
(2) A UML class diagram that includes all classes you wrote. Do not include predefined classes. You need only include
the class name for each individual class, not the variables or methods;

(3) A table of test cases including the test cases that you have created to test the program. The table
should have 5 columns indicating (i) what aspect is tested, (ii) the input values, (iii) the expected output,
(iv) the actual output and (v) if the test case passed or failed. Each test case will be defined in a table row.
(4) Relevant screenshots of program execution;
(5) Lessons learned from the project;

https://google.github.io/styleguide/javaguide.html

Grading Rubric:

Criteria Meets Does Not Meet

Design

5 points 0 points

GUI is hand coded and matches required
design

GUI is generated by a GUI generator or
does not match required design

Includes generic class for binary search tree Does not include generic class for binary
search tree

All instance variables are private Instance variables are not private

Insert method uses recursion Insert method does not use recursion

Contains Fraction class that implements
Comparable

Does not contain Fraction class that
implements Comparable

Uses good object-oriented design practice
regarding code efficiency, encapsulation and
information hiding, class and code reuse,
high cohesion of classes, avoiding code
duplication.

Does not use good object-oriented design
practice regarding code efficiency,
encapsulation and information hiding,
class and code reuse, high cohesion of
classes, avoiding code duplication.

Functionality

10 points 0 points

Correctly sorts all test cases in ascending
order

Does not correctly sort all test cases in
ascending order

Correctly sorts all test cases in descending
order

Does not correctly sort all test cases in
descending order

Correctly sorts all test cases involving
integers

Does not correctly sort all test cases
involving integers

Correctly sorts all test cases involving
fractions

Does not correctly sort all test cases
involving fractions

Handles the exceptions and generates error
messages for nonnumeric and malformed
fraction input

Does not handle the exceptions and
generate error message for nonnumeric
and malformed fraction input

Test Cases

5 points 0 points

Test cases table is defined and included in
the P3SolutionDescription document

Test cases table is not defined and
included in the P3SolutionDescription
document

Test cases include integers Test cases do not include fractions

Test cases include fractions Test cases do not include a case to test
invalid token beginning with a digit

Test cases include nonnumeric and
malformed fraction input

Test cases do not include nonnumeric and
malformed fraction input

Documentation

5 points 0 points

Solution description document
P3SolutionDescription includes all the
required sections (appropriate titled).

No solution description document is
included

Source code follows Google
recommendation Java style

Source code does not follow Google
recommendation Java style

Comment blocks with class description
included with each class

Comment blocks with class description
not included with each class

 Source code is commented and indented Source code is not commented and
indented

Overall Score Meets Does not meet

16 or more 15 or less

