Case Study 6: Due 3/10/14

Economic Order Quantity with Defects

In An economic order quantity model with defective items and shortages by Eroglu and Azdemir, (International Journal of Production Economics, Vol 106 (2007)), the authors investigate the EOQ model in which 100% of the items received are not perfect. In it, they define the following:

D	demand rate in units per time
y	order size for each cycle
w	maximum backorder level allowed
k	fixed order cost
c	unit variable cost
p	percentage of defective items in y
S	unit selling price of good items
V	unit selling price of
C_{s}	imperfect quality items $v<c$
unit disposal cost for scrap items	

h	holding cost/unit/unit time
Π	backorder cost/unit/unit time
θ	percentage of scrap items
	in the defective items
x	screening rate in units per time
d	unit screening cost
t_{1}	time to build up a backorder
	level of w units
t_{2}	time to eliminate the
	backorder level of t_{2} units
t_{3}	time to screen y units per cycle
t	

In their model, the expected total profit per unit time is given as

$$
E(T P U)=s D+\frac{v D(1-\theta) E(p)}{E_{1}}-\frac{D\left(c+d+c_{s} \theta E(p)\right)}{E_{1}}-\frac{k D}{y E_{1}}-\frac{h E_{4} y}{2 E_{1}}+h w-\frac{(h+\Pi) E_{2} w^{2}}{2 y E_{1}}
$$

where,

$$
\begin{aligned}
& E_{1}=1-E(p) \\
& E_{2}=E\left(\frac{1-p}{1-p-D / x}\right) \\
& E_{3}=E\left((1-p-D / x)^{2}\right) \\
& E_{4}=\frac{D(2-D / x)}{x}+E_{3}
\end{aligned}
$$

Given a company orders a product and expects the defective fraction, $\mathrm{E}(\mathrm{p})$, to be 5%. Demand is 15,000 units annually and they screen at a rate of 60,000 units annually (think of this as the QC check which is done much quicker than demand arrives). Order cost is $\$ 400$ per order, holding cost per year is $\$ 4$ per unit and shortage cost per year is $\$ 6$ per unit. Unit purchase, screening and disposal costs are $\$ 35, \$ 1$ and $\$ 2$, respectively. Selling price of good items is $\$ 60$ and sell price of imperfect items is $\$ 25$. The portion of scrap items in the defective items is 20% (so that the portion of scrap items in lot size y
is $(0.05)(0.20)(y)$.

Optimum order quantity is given as

$$
y^{*}=\sqrt{\frac{2 k D(h+\pi)}{h \pi}}
$$

and optimum maximum backorder allowed is

$$
w^{*}=\frac{h y^{*}}{h+\pi}
$$

ASSIGNMENT:

a)Calculate the expected total profit per unit.
b) What is the effect of different defective rates on optimal order quantity, backorder quantity and expected total profit per unit? Please display your results graphically as well as a brief description.

