
Computer Science 241

(Pair) Program 1 (10 points)
Due Tuesday, April 19th, at 5:30pm

Acknowledgement: This assignment material was developed by Dr. Brian Hutchinson.

Read all of the instructions. Late work will not be accepted.

Overview

For the first programming assignment you will work with your assigned partner to create a
program that is able to “learn” human language and generate new sentences in the language.
Its concept of language is somewhat limited: it knows only an estimate that the probability
that a word wt will follow a sequence of (n − 1) words wt−n+1, w2, . . . , wt−1. In the natural
language processing community, these are known as “n-gram” models, and they have proven
to be very useful. You will observe that the order of the model, n, has a big effect on the
kinds of “sentences” it generates. When it learns from a collection of Grimm’s fairy tales, it
produces things like:

• When n = 2: <s> i not upon the cat ’and as she was properly heated the peasants
heard it grieves me to his nose to the tree but all that was about the stairs </s>

• When n = 3: <s> and the horse and rode into the jug at his cap on with the sack of
meal that we should at least you might take a draught the maid ’what a maypole!’
said she and was forced at last the boy ’or take yourself off out of her </s>

• When n = 4: <s> where have you been’ said his father ’i have been travelling so long
that i should like very well to find out where she is however’ said the star-gazer as he
looked through his maps but the castle was a garden and around it was a great deal
better </s>

• When n = 5: <s> worse still she neglected to make the old woman’s bed properly and
forgot to shake it so that the boar jumped up and grunted and ran away roaring out
’look up in the tree there sits the one who is to blame’ so they looked up and espied the
wolf sitting amongst the branches and they called him a cowardly rascal and would not
suffer him to come down till he was heartily ashamed of himself and had promised to
be good friends again with old sultan the straw the coal and the bean in a village dwelt
a poor old woman who had dim eyes could not see it and thought it very beautiful and
said to himself ’i will not lose her this time’ but however she again slipped away from
him unawares and ran off towards home and as the prince followed her she jumped up
into the pigeon-house and shut the door behind it and then the raging beast which
was much too heavy and awkward to leap out of the window was made of fine black
ebony and as she sat looking out upon the snow she pricked her finger and three drops
of blood fell upon it </s>

1

(Here <s> denotes a special “start-of-sentence” token and </s> a special end-of-sentence
token.) The program “learns” by reading and gathering statistics from an input training
text file.

You will implement this functionality in the LanguageModel class; a skeleton .java file
with several dummy methods has been provided to you. The pre- and post-conditions for
each method are specified; it will be your job to complete all of the empty methods according
to those conditions. You are free to add as many additional private helper methods as you
would like. Now that you have a sense of what you will be doing, let’s take a look at how
you will be working on the assignment.

Pair Programming1

Pair programming is a software development technique where two programmers work to-
gether in front of one keyboard. One partner types code while the other is suggesting and/or
reviewing every line of code as it is being typed. The person typing is called the driver.
The person reviewing and/or suggesting code is called the navigator. The two programmers
should switch roles frequently (e.g. every 20 minutes). For this to be a successful technique
the team needs to start with a good program design so they are on the same page when it
is finally time to start typing on the computer. No designing or programming is to be
done without both partners present! Pair programming has been shown to increase
productivity in industry and may well increase yours, but there are additional reasons it is
being used in this class. First, it is a means to increase collaboration, which is something
department graduates now working in industry report that they wish they had more expe-
rience with. Second, working in pairs is a good teaching tool. Inevitably, in each pairing
the partners will have different styles and abilities (for instance, one person may be better
at seeing the big picture while the other is better at finding detailed bugs or one person
might like to code on paper first while the other likes to type it in and try it out). Because
of that you will have to learn to adjust to another person’s style and ideally you will meet
each other half way when there are differences in approach. It’s important that each person
completely understands the program and so both parties need to be assertive. Be sure to
explain your ideas carefully and ask questions when you are confused. Also it is crucial that
you be patient! There is plenty of time allotted to complete this assignment as long as you
proceed at a steady pace. Ask for help from me or the department tutors if you need it.

You will be assigned a partner by me via email. Because there is no lab, you will need
coordinate with your partner to find times when you can both be present. You will need to
contact me ASAP if there is any reason you will not be able to collaborate. Let me stress
again that no designing or programming is to be done without both partners
present! If I determine this happened I will fail you and your partner for this
assignment.

1These guidelines are based on a previous version developed by Perry Fizzano.

2

Program 1 Specifications

File and Directory Naming Requirements
• The writeup and all of your source code should be found directly in yourArchive/prog1,

where yourArchive is replaced with the name of your actual zip archive.

• Your source code will be written in a Java file named LanguageModel.java (a skeleton
of this file has been provided to you).

• Your writeup must be a plain-text file named writeup.txt.

The Program1 Driver and Its Command-Line Specification

A program named Program1 (Program1.java) has been provided to you. Do not modify
Program1’s code. This program drives your LanguageModel package, building a language
model from the input text, querying the user for phrases and then randomly generating
sentences to complete those phrases. It accomplishes this by calling public methods from
your LanguageModel class. Because it calls your methods, you must not change the method
header for any of the public methods. You must supply this program with four arguments:
the name of the input text file, the maximum n-gram order to consider, the name of the
output vocabulary file to write, and name of the counts file to write, e.g.:

C:> java.exe Program1 input.txt 6 vocab.txt counts.txt

or (in Linux):

$ java Program1 input.txt 6 vocab.txt counts.txt

Writing counts can be slow, so Program1 can be called without the last two arguments; e.g.:

$ java Program1 input.txt 6

When called in this manner, neither the vocab or counts files are written.
I will use Program1 for grading; it is available for you to use during development. The

results produced by my completed version on a specific set of test files will be available to
you, but not until close to the deadline. It is important that you develop your own test cases
to confirm the correctness of your code. Once my cases are released, be sure to compare the
output of your code against the these files to make sure that your formatting is identical (and
that your output is correct). You should test your class on at least two new text files (name
them test1.txt and test2.txt and include them with your submission). If converting
normal text to the input format, you will need to do a little preprocessing. In particular,
each line must begin with <s> and end with </s>, and all words must be separated by exactly
one space character. I will provide a script to do help with the text pre-processing.

Compilation

Your code should be able to compile cleanly with the following commands on any of the
department’s lab machines:

javac LanguageModel.java Program1.java

3

Grading

Submitting your work

Submit a zip archive of your assignment material on Canvas. Your archive should have in
it, at the least:

• LanguageModel.java

• Your write-up: writeup.txt

• Your two new test input file you have created (less than 5MB per file, please)

– Name your new test files test1.txt, test2.txt, etc.

• Any other source code needed to compile your program / class

Your archive need not and should not contain your .class files. Upon checking out your
files, I will replace your version of Program1.java with my original one, compile all .java
files, run Program1 against a series of test documents, analyze your code, and read your
documentation.

Points

This assignment will be scored by taking the points earned and subtracting any deductions.
You can earn up to 10 points:

Component Points
Write Up & Test Cases 1.4
LanguageModel (constructor) 1.2
getMaxOrder 0.4
saveVocab 1
saveCounts 1
randomCompletion 1.2
randomNextWord 1.4
getCounts 1.4
convertCountsToProbabilities 1
Total 10

You may also have deductions from your score for

• Poor code style (e.g. inconsistent indentation, non-standard naming conventions, ex-
cessively long methods, code duplication, etc.)

• Inadequate versioning

• Errors compiling or running

Write-Up & Test Cases

With your partner, you need to create, add and commit a plaintext2 document named
writeup.txt. In it, you should include the following (numbered) sections.

2E.g. created with vim, kate or gedit.

4

1. Your names

2. Declare/discuss any aspects of your client or server code that are not working. What
are your intuitions about why things are not working? What potential causes have you
already explored and ruled out? Given more time, what would you try next? Detailed
answers here are critical to getting partial credit for malfunctioning programs, and
failure to disclose obvious problems will lead to additional penalties.

3. An acknowledgment and discussion of any parts of the program that appear to be
inefficient (in either time or space complexity).

4. In a few sentences, describe how you tested that your code was working. What specific
cases do test1.txt and test2.txt test?

5. What was the most challenging aspect of this assignment, and why?

5

Details

Computing and Storing N-Gram Probabilities

An n-gram model predicts the next word wt given the previous (n− 1) words, i.e. with

P (wt|wt−n+1, . . . , wt−2, wt−1) (1)

Our program will use maximum likelihood estimates of these probabilities, according to the
following equation:

P (wt|wt−n+1, . . . , wt−2, wt−1) =
C(wt−n+1, . . . , wt−2, wt−1, wt)

C(wt−n+1, . . . , wt−2, wt−1)

Here C(wt−n+1, . . . , wt−2, wt−1, wt) denotes the number of times the sequence of words wt−n+1, . . . , wt−1, wt

appears in the input (training) file; likewise, C(wt−n+1, . . . , wt−2, wt−1) denotes the number
of times the word sequence wt−n+1, . . . , wt−1 appears in the the input data. Estimating the
probabilities takes places in three steps:

1. First, we must collect all of the n-gram counts for bigram (2-gram), trigrams (3-
gram), all the way up to maxOrder-grams. The lower order terms are needed at
the beginning of a sentence, when we don’t have full histories, and are useful if
we want to generate text using a lower order model. These should be stored in a
HashMap<String,Integer>. The string of the n-gram can just be the sequence of
words in the n-gram, each separated by a single space.

2. Second, we must collect all of the history counts for all of the same orders. The histories
are just the n-gram without the last word. These are slightly different than the counts
in step 1 because these will include counts of single word histories (needed for bigrams),
whereas the n-gram counts only include counts of bigrams and up. These can (and
should) be collected at the same time as the n-gram counts in step 1, though. These
should be stored in a HashMap<String,Integer>. The string of the history is the just
sequence of words in the history, each separated by a single space.

3. Finally, the counts can be turned into probabilities according to Equation (1). For
all n-grams in the n-gram counts, use the n-gram counts for the numerator, and
the history counts for the denominator. These probabilities should be stored in a
HashMap<String,Double>, mapping an n-gram to the probability of the last word in
the n-gram given the previous words in the n-gram.

Drawing a Random Word

You can think of a distribution over a set of words as partitioning the interval (0, 1) on the
real line. More probable words have larger regions, less probable words have smaller ones. To
draw a word, you will draw a number between 0 and 1 according to a uniform distribution,
and whichever word it falls upon is the word to be drawn. This should be implemented with
the following simple algorithm:3

3It is my convention that A .. B refers to the range A to B, inclusive, as long as A ≤ B, or else it evaluates
to an empty range.

6

drawRandomWord(history,order)

d := drawRandomNumber (between 0 and 1)

cumulativeSum := 0

for i in 0 .. vocabSize-1 do

cumulativeSum := cumulativeSum + P(ith vocabulary word given history)

if cumulativeSum > d

return ith vocabulary word

fi

od

return very last vocabulary word

end

Note that you should use min(length(history), order− 1) history words, so that the overall
probability of word given history is an order order n-gram whenever possible. By using
this algorithm, using a deterministic vocabulary order (case-insensitive ascending alphabetic
order), and using the same random number generator seed, you should draw exactly the
same “random” sentences as my program. As a optional challenge, you can devise a more
efficient algorithm to do this random draw - but it must give the same answers as the above
algorithm.

Academic Honesty

To remind you: aside from your designated partner, you must not share code with your
classmates: you must not look at others’ code or show your classmates your code. You
cannot take, in part or in whole, any code from any outside source, including the internet,
nor can you post your code to it. If you and your partner need help from another pair, all
involved should step away from the computer and discuss strategies and approaches, not
code specifics. I am available for help during office hours, as are department tutors, but you
should attend these hours with your partner. I am also available via email (make sure you
and your partner is included in the email and do not wait until the last minute to email). If
you participate in academic dishonesty, you will fail the course.

7

