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Abstract In this study, an adaptive optimization method
based on artificial neural network model is proposed to
optimize the injection molding process. The optimization
process aims at minimizing the warpage of the injection
molding parts in which process parameters are design
variables. Moldflow Plastic Insight software is used to
analyze the warpage of the injection molding parts. The
mold temperature, melt temperature, injection time, packing
pressure, packing time, and cooling time are regarded as
process parameters. A combination of artificial neural
network and design of experiment (DOE) method is used
to build an approximate function relationship between
warpage and the process parameters, replacing the expensive
simulation analysis in the optimization iterations. The
adaptive process is implemented by expected improvement
which is an infilling sampling criterion. Although the DOE
size is small, this criterion can balance local and global search
and tend to the global optimal solution. As examples, a
cellular phone cover and a scanner are investigated. The
results show that the proposed adaptive optimization method
can effectively reduce the warpage of the injection molding
parts.
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1 Introduction

Injection molding is the most widely used process for
producing plastic products. The entire injection molding cycle
can be divided into three stages: filling, post-filling, and mold
opening [1]. During production, warpage is one of the most
important quality problems, especially for the thin-shell plastic
products. Several researches have been devoted to the warpage
optimization of thin-shell plastic parts [2–9]. Warpage can be
reduced by modifying the geometry of parts, or changing the
structure of molds, or adjusting the process parameters.
The part design and mold design are usually determined in
the initial stage of product development, which cannot be
easily changed. Therefore, optimizing process parameters is
the most feasible and reasonable method.

It is an important issue in plastic injection molding to
predict and optimize the warpage before manufacturing
takes place. Many literatures have been devoted to warpage
optimization. Lee and Kim [10] optimized the wall
thickness and process conditions using the modified
complex method to reduce warpage and obtained a
reduction in warpage of over 70%. Sahu et al. [11]
optimized process conditions to reduce warpage by a
combined implementation of the modified complex method
and design of experiments. Their results showed that these
methods can effectively reduce warpage.

Although these methods can reduce warpage effectively,
they are costly and time-consuming because they perform
lots of expensive function evaluations. Compared to these
methods, the Taguchi method [12–14] is easier to perform
and can analyze the effective factors, but it can only obtain the
better combination of process parameters, not the optimal
solution in the design space.

The warpage is a nonlinear and implicit function of the
process parameters, which is typically estimated by the
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solution of finite element equations. In general, a complicated
task often requires huge computational cost. Hence, in order
to reduce the computational cost in warpage optimization,
many researchers have introduced some surrogate models,
such as Kriging surrogate model, artificial neutral network
(ANN), response surface method, and support vector regres-
sion. Gao et al. [15–17] optimized process conditions to
reduce the warpage by combining the kriging surrogate
model with modified rectangular grid approach or expected
improvement (EI) function method. Kurtaran et al. combined
the genetic algorithms with a neural network or response
surface method to optimize the process parameters for
reducing the warpage of plastic parts [18, 19]. Zhou et al.
[20] optimized injection molding process using support
vector regression model and genetic algorithm. Their results
have shown that the methods based on the surrogate model
can reduce the high computational cost in the warpage
optimization, and the genetic algorithm can be used to
approach to the global optimal design effectively.

In this study, the mold temperature, melt temperature,
injection time, packing pressure, packing time, and cooling
time are considered as process parameters. A small-size
design of experiment is obtained by Latin hypercube design
(LHD), and the warpage values are evaluated by MoldFlow
Plastic Insight software. An adaptive optimization based on
artificial neural network model is proposed. The adaptive
process is performed by an EI function, which can
adaptively select the additional sample points to improve
the surrogate model and find the optimum value [17]. This
method has been viewed as effective global optimization
[21]. The numerical results show that this method can
reduce warpage efficiently.

2 Artificial neural network

ANN is a powerful tool for the simulation and prediction of
nonlinear problems. A neural network comprises many
highly interconnected processing units called neurons. Each
neuron sums weighted inputs and then applies a linear or
nonlinear function to the resulting sum to determine the
output, and all of them are arranged in layers and combined
through excessive connectivity.

The typical ANN is a back propagation network (BPN)
[22–26] which has been widely used in many research
fields. A BPN has hierarchical feed-forward network
architecture, and the output of each layer is sent directly
to each neuron in the layer above. Although a BPN can
have many layers, all pattern recognition and classification
tasks can be accomplished with a three-layer BPN [27].
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Fig. 1 Configuration of the ANN model
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Fig. 2 Flowchart of combining ANN/EI optimization

Fig. 3 Mid-plane model of a cellular phone cover

Table 1 Ranges of the process parameters

Parameter Tmold

(°C)
Tmelt

(°C)
tin
(s)

Ppack

(%)
tpack
(s)

tc
(s)

Lower limit 50 260 0.2 60 1 5

Upper limit 90 300 0.8 90 5 15
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A BPN is trained by repeatedly presenting a series of
input/output pattern sets to the network. The neural network
gradually “learns” the input/output relationship of interest
by adjusting the weights between its neurons to minimize
the error between the actual and predicted output patterns of
the training set. After training, a separate set of data which
is not in the training set is used to monitor the network’s
performance. When the mean squared error (MSE) reaches
a minimum, network training is considered complete and
the weights are fixed.

In this paper, a three-layer ANN model with one hidden
layer was used. The mold temperature (Tmold), melt
temperature (Tmelt), injection time (tin), packing pressure
(Ppack), packing time (tpack), and cooling time (tc) are
regarded as input variables, and warpage is regarded as
output variable. So the neuron numbers of the input layer
and output layer of ANN are determined. The neuron
number of the middle layer was determined by trials. The
transfer function between the input layer and the hidden
layer is “Logsig,” and the transfer function between the
hidden layer and the output layer is “Purelin.” The train
function is trainlm, performance function is MSE, learning
cycle is 50,000, learning rate is 0.05, and momentum factor
is 0.9. The configuration of ANN used in this paper is
shown in Fig. 1.

3 EI method

ANNs can be used as an arbitrary function approximation
mechanism which “learns” from observed data. ANN is here
used to build an approximate function relationship between
the warpage and the process parameters, replacing the
expensive analysis and reanalysis of simulation programs in
the optimization process. In general, the approximate function
may have many extremum points, making the optimization
algorithms employing such functions converge to a local
minimum. EI algorithm is here introduced to close to the
global optimization solution.

EI involves computing the possible improvement at a
given point. It is a heuristic algorithm for a sequential design
strategy for detecting the global minimum of a deterministic
function [17, 21]. It can balance local and global search.
Before sampling at some point x, the value of Y(x) is uncertain.
Y(x) at a candidate point x is normally distributed with byðxÞ,
and variance σ2 given using the ANN predictor. If the current
best function value is Ymin, then an improvement I ¼
Ymin � yðxÞ by the ANN predictor can be achieved. The
likelihood of this improvement is given by the normal density:
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Then, the expected value of the improvement is found by
integrating over this density:
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Fig. 5 Warpage of the cover after optimization

Fig. 4 Warpage of the cover before optimization

Table 2 Optimization results

Parameter Tmold

(°C)
Tmelt

(°C)
tin
(s)

Ppack

(%)
tpack
(s)

tc
(s)

Warpage
(mm)

Before
optimization

75.57 288.31 0.57 63.96 1.22 5.70 0.1941

After
optimization

73.86 298.99 0.20 60.00 1.00 9.48 0.0833

Fig. 6 Model of a scanner
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Using integration by parts, Eq. 2 can be written as:

EðIÞ ¼ sðxÞ u6ðuÞ þ fðuÞ½ � ð3Þ
where Φ and f are the normal cumulative distribution
function and density function, respectively, and

u ¼ Ymin � by xð Þ
s xð Þ : ð4Þ

The first term of Eq. 3 is the difference between the
current minimum response value Ymin and the predicted
value byðxÞ at x, penalized by the probability of improvement.
Hence, the first term is large when byðxÞ is small. The second
term is a product of predicted error σ(x) and normal density
function f(u). The normal density function value is large
when the error σ(x) is large and byðxÞ is close to Ymin. Thus,
the expected improvement will tend to be large at a point
with the predicted value smaller than Ymin and/or with much
predicted uncertainty.

This infilling sampling method has some advantages: (1)
It can intelligently add sample points to improve the ANN,
so it allows “learns” from observed data with a small size;
(2) it can avoid searching the areas with relative large
function values and reduce the computational cost; (3) it
can also avoid adding some points close to each other in the
design space and keep the stability of ANN prediction.

4 Warpage optimization based on improved ANN
method

4.1 Warpage optimization problem

A warpage minimum design problem can be described as
follows:

Find x1; x2; � � � ; xm
maxmize E I x1; x2; � � � ; xmð Þ½ �
Subject to x

� j � xj � xj j ¼ 1; 2; � � � ;m
ð5Þ

where the process parameters x1; x2; � � � ; xm are the design
variables and x

� j and xj are the lower and upper limits of the
jth design variable. The objective function E I x1; x2; � � �;ð½ xmÞ�
is given by Eqs. 3 and 4 in which Ymin and yðxÞ are the current
minimum value and the predicted value of warpage, respectively.

4.2 Convergence criterion

The convergence criterion is here to satisfy:

E IðxÞ½ �
Ymin

� $r ð6Þ

where Δr is a given convergence tolerance and Ymin is the
minimum function value in samples. The left-hand side is a
ratio between the maximum expected improvement and the
minimum function value. Thus, Δr can be given without
consideration of the magnitudes, and Δr=0.1%.

4.3 Implementation of optimization procedure

Implementation of integrated ANN model and EI function
method is given in Fig. 2.

5 Warpage optimization for a cellular phone cover
and a scanner

5.1 The optimization problem

In this section, the results of two warpage optimization
examples are presented. These are intended to show the

Table 3 Ranges of the process parameters

Parameter Tmold

(°C)
Tmelt

(°C)
tin
(s)

Ppack

(%)
tpack
(s)

tc
(s)

Lower limit 80 260 0.2 60 1 5

Upper limit 120 300 0.8 90 5 15

Table 4 Optimization results

Parameter Tmold (°C) Tmelt (°C) tin (s) Ppack (%) tpack (s) tc (s) Warpage (mm)

Before optimization 92.95 298.38 0.25 85.49 2.83 10.30 0.4805

After optimization 119.32 300.00 0.20 90.00 4.92 15.00 0.2896

Fig. 7 Warpage of the scanner before optimization
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efficiency and accuracy of the integrated ANN model and
EI function method.

The first example is a cellular phone cover. It is
discretized by 3,780 triangle elements, as shown in Fig. 3.
Its length, width, height, and thickness are 130, 55, 11, and
1 mm, respectively. The material is polycarbonate (PC)/
acrylonitrile-butadiene-styrene.

The mold temperature (Tmold), melt temperature (Tmelt),
injection time (tin), packing pressure (Ppack), packing time

(tpack), and cooling time (tc) are considered as design
variables. The objective function warpage(x) is quantified
by the out-of-plane displacement, which is the sum of both
maximum upward and downward deformations with
reference to the default plane in Moldflow Plastics Insight
software. The constraints consist of the lower and upper
bounds on the design variables given in Table 1. ANN
model is here used to approximate warpage(x), i.e., by xð Þ in
Eq. 2.

The ranges of mold temperature and melt temperature
are based on the recommended values in Moldflow Plastics
Insight, and the ranges of injection time, packing pressure,
packing time, and cooling time are determined by the
experience of the manufacturer.

First, ten samples are selected by LHD, then the warpage
value corresponding to every sample design is obtained by
running Moldflow Plastics Insight software, and finally, an
approximate function relationship between warpage and the
process parameters is constructed by means of ANN model
simulation, replacing the expensive simulation analysis in
the optimization iterations.

The optimization problem based on EI function is solved
here using the sequential quadratic programming [28]. The
expected improvement surface may be highly multimodal

Fig. 8 Warpage of the scanner after optimization
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Fig. 9 Each factor’s individual
effect on the warpage of a
cellular phone cover
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and thus difficult to optimize reliably. Firstly, 1,000 random
points are selected, and EI function values computation are
performed by means of the constructed approximate
mathematical function. The point with maximum EI
function value is then selected to be one initial design. In
addition, the point with minimum warpage value in sample
points is selected to be another initial design, i.e., two
optimization processes are executed at each iteration. In
comparison with simulation analysis, these processes
consume very short time and can be ignored.

Only 20 iterations were needed to obtain the optimization
solution; the results are given in Table 3. Figures 4 and 5
show the warpage values before and after optimization,
respectively (Table 2).

The second example is a scanner. The cover is discretized
by 8,046 triangle elements, as shown in Fig. 6. It is made of
PC. The mold temperature (Tmold), melt temperature (Tmelt),
injection time (tin), packing pressure (Ppack), packing time
(tpack), and cooling time (tc) are considered as design
variables. The objective function warpage(x) is quantified
by the out-of-plane displacement, which is the sum of both
maximum and minimum deformations with reference to
the default plane in Moldflow Plastics Insight software. The
constraints consist of the lower and upper bounds on the
design variables given in Table 3.

The ranges of mold temperature and melt temperature
are based on the recommended values in Moldflow Plastics
Insight, and the ranges of injection time, packing pressure,
packing time, and cooling time are determined by the
experience of the manufacturer.

Initial ten samples are selected by LHD; the optimal
solution was obtained after 25 iterations. The results are
given in Table 4. Figures 7 and 8 show the warpage before
and after optimization, respectively.

6 Discussions

Tables 2 and 4 show that several process parameters are
lying in the boundaries of the limits. Figures 9 and 10 show
each factor’s effect on the warpage when all other factors
are kept at their optimal level, respectively.

Figures 9 and 10 show that high melt temperature and
short injection time are desirable. The warpage value
decreases nonlinearly as melt temperature changes
from260°C to 300°C. This is because lower melt temper-
ature has bad liquidity and can lead to early formation of
frozen skin layer, which can generate higher shear stress
and block flow. If there is no enough time to release the
shear stress, the warpage will increase. However, the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

80 90 100 110 120
Mold temperature (oC)

W
ar

pa
ge

 (
m

m
)

0

0.1

0.2

0.3

0.4

0.5

0.6

260 270 280 290 300

Melt temperature (oC)

W
ar

pa
ge

 (
m

m
)

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.2 0.3 0.4 0.5 0.6 0.7 0.8
Injection time (s)

W
ar

pa
ge

 (
m

m
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

60 70 80 90

Packing pressure (MPa)

W
ar

pa
ge

 (
m

m
)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1                     2 3                     4                     5

Packing time(s)

W
ar

pa
ge

 (
m

m
)

0.27

0.28

0.29

0.30

0.31

0.32

0.33

5               7 9 11 13 15

Cooling time (s)

W
ar

pa
ge

 (
m

m
)

Fig. 10 Each factor’s individual
effect on the warpage of a
scanner
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warpage value increases nonlinearly with the injection time.
For the thin-wall injection molded parts, long injection time
can increase the ratio of the frozen skin layer to the molten
core layer. This can block badly the flow and lead to higher
shear stress and more molecular orientation in the material.
The warpage value changes only a period of packing time
and almost is constant when packing time is longer than
some values. Figures 9 and 10 also show that the variation
of warpage values is irregular when changing other process
parameters such as packing pressure, cooling time, and
mold temperature. The warpage value depends on the
combined efforts of all process parameters, and all these
process parameters should be provided by means of
optimization.

7 Conclusions

In this study, an integrated ANN model and EI function
method is proposed to minimize the warpage of the
injection molding parts. This method aims at optimizing
some approximate functions trained by the ANN model.
The optimization process can be started from an
approximate function trained by a set of a few sample
points, then adding the best sample point into the
training set by means of EI function. Every iteration of
the optimization consists of training the approximate
function and optimizing the EI function. The EI function
can take the relatively unexpected space into consider-
ation to improve the accuracy of the ANN model and
quickly approach to the global optimization solution. As
the applications, a cellular phone cover and a scanner,
are investigated, only a small number of Moldflow
Plastics Insight analysis are needed in optimizations
because the first iterations for both examples need a set
of a few sample points (only ten sample points) and
follow-up of every iteration adds one sample point into
the set only. Numerical results show that the proposed
optimization method is efficient for reducing warpage of
injection molded parts and can converge to the optimi-
zation solution quickly. Although the design variables of
these relatively examples are limited to the mold
temperature, melt temperature, injection time, packing
pressure, packing time, and cooling time, the present
method is also applicable to more process parameters.

However, there still are two problems. The first one is
the development of an efficient optimization algorithm.
Because the EI function is multimodal with sharp peaks, so
it would be difficult to find the optimum solution. The
second one is developed for some optimization methods to
determine some network parameters, such as learning cycle,
learning rate, momentum factor, and number of hidden
neuron in the learning framework of the BPN, making the

convergence speed of the network quick and steady. Further
developments are planned.
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