[image:]
[image:]
[image:]
[image:]
[bookmark: _GoBack]Implement a simple memory allocator based on the so-called "Buddy System" scheme, that allocates memory in blocks with sizes that are powers of two, starting at a block size that is given as an argument when the allocator is initialized.
* The memory allocator shall be implemented as a C module my_allocator, which consists of a header file my_allocator.h and my_allocator.c. It should provide the functions my_malloc() and my_free(), very similar to the UNIX calls malloc() and free().
* Evaluate the correctness (up to some point) and the performance of your allocator. For this use the given strange implementation of a highly-recursive Ackermann function. In this implementation of the Ackermann function, random blocks of memory are allocated and de-allocated sometime later, generating a large combination of different allocation patterns.
* Write a program called memtest, which reads the basic block size and the memory size (in bytes) from the command line, initializes the memory, and then calls the Ackermann function. It measures the time it takes to perform the number of memory operations. Make sure that the program exits cleanly if aborted (using atexit() to install the exit handler).
* Use the getopt() C library function to parse the command line for arguments. The synopsis of the memtest program is of the form
 memtest [-b <blocksize>] [-s <memsize>]
 -b <blocksize>	defines the block size, in bytes. Default is 128 bytes.
 -s <memsize>		defines the size of the memory to be allocated, in bytes.
Default is 512kB.
* Repeatedly invoke the Ackermann function with increasingly larger values for n and m (be careful to keep n <= 3; the processing time increases very steeply for larger values of n).
* Make sure that the allocator gets de-allocated (and its memory freed) when the program either exits or aborts (for example, when the user presses Ctrl-C).
image1.png
Background: Kernel Memory Management. The kerncl is managing the physical memory.
‘both for itslf and for the system and user processos. Tho memory oceupied by the kernel code and
its data i reserved and is nover used for any other purpose. Other physical memory may be used
‘s frames for virtual memory, for bulfer cachos, and s on. Most of this memory must be allocated
‘and de-allocated dynamically, and an infrastructure must be in place to keep track which physical
memory & in s, and by whom,

Ideally, physical memory should look like a single, contigrious segment from which an allocator
‘can take memory portions and return them. This is not the case in most systems. Rather, different
‘scgments of physical memory have different propertics. For example, DMA may not be abie to
‘address physical memory above 16MB. Similarly, the system may contain more physical memory
than can be directly addressed, and the sogments above need t0 be handlod using appropriate
memory space extension mechanisms. For all these reasons, many operating systems (for example
Linux) partition the memory into so-called zones, and treat cach zone separately for allocation
‘purpases. Memory allocation requests then typically come with a list of zones that can be used to
satisfy the request. For example, a particular request may be preferably satisfid from the “normal”
‘zone. 1f that fais, from the high-memory zone that noods special access mechanisms. Only if that
fails 100, the allocation may attempt to alloeation from the DMA zone.

Within cach zone, many systems (for example Linux) use a buddy-system llocator to allocate
‘and free physical memory.

You are to implement a C module (b and .c fils) that realizes & memory

allocator as definod by the following file 2y.allocator b

#ifndef MY_ALLOCKTOR H_
#dofine MY_ALLOCKTOR H_

IE

=y_allocator b +/

image2.emf

image3.emf

image4.png
Initializing the Free List and the Froe Blocks: You are given the size of the memory zone as
argument 10 the iait () method. The given memory size is likely not & power-of-two mumber. You
e to partition the memory into a sequence of power-of-to sized blocks and initalize the blocks
‘and the free list accordingly.

