
Page 1

 Due Date: Friday 13th Sept. 2013 at 17:00 (week 07).

You are required to attempt all the questions listed below, and submit your work in a

single .zip file containing document (in either MS word or PDF format) and java source code.

The indicative marking scheme is shown below.

Question 1: [60 marks, all subquestions have equal marks]

You are required to calculate the time complexity using the big-O notation of the

myAlgorithm(int n) method defined by the following Java code.

Code: Algorithm_1 ##

void algorithm_1(int n) {
if (n < 1) return;

System.out.println(q(1, n)*n);

System.out.println(r(n));

System.out.println(q(1, n+n) + r(n+n));
}

01

02

03

04

05

06

int q(int i, int n) {
return i+(i >= n ? 0 : q(i+i, n));

}

01

02

03

int r(int n) {
int sum = 0;

for (int i=1; i <= n+n; i++)

sum+=i + q(1,n);

return sum;

}

01

02

03

04

05

06

int t(int n) {
for (int i=1; i <= n+n; i++) {

for (int j=1; j < i; j++)

sum+=i + q(1,n);

01

02

03

04

05

Page 2

return sum; 06

}

1. For n 0 , what is the time complexity of the method q(1, n). Show the details of

your calculation of O(q(1, n) ≈ O(?).

2. For n 0 , what is the time complexity of the r(n) method. Show the details of you

calculation of O(r(n)) ≈ O(?).

3. For n 0 , what is the time complexity of the algorithm_1(int n) method. Show the
details of you calculation of O(algorithm_1(n)) ≈ O(?).

Question 2: [40 marks]

You are required to calculate the time complexity using the big-O notation of the

Algorithm_2 given by the following methods defined by the following Java code.

1. Explain how the binarySearch(array[n], key) algorithm works support your answer

with an illustration of this search algorithm.

2. For

[15 marks]

n 0 , what is the time complexity of the binarySearch(array[n], key) algorithm.

Show the details of you calculation of O(binarySearch(array[n], key)) ≈ O(?).

[15 marks]

Code: Algorithm_2

int binarySearch(int[] array, int key) {

int lo = 0, mid, hi = array.length-1;

while (lo <= hi) {

mid = (lo + hi)/2;

if (key < array[mid])

hi = mid - 1;

else if (array[mid] < key)

lo = mid + 1;

else return mid; // success

}

return -1; // failure

}

3. Write a Java program that counts the number of operations the binarySearch

algorithm executes to search a given array of size n. Hint: you can simply extend the

above code say the while loop to count the number of iterations it executes for a given

array size n. The program should output say two variables n and iterated respectively

for the array size and the number of iterations the binarySearch has executed.

Page 3

Assuming, that eachAlgorithm_2 iteration takes a constant timet0.01 s (seconds),

plot the experimental time complexity of binarySearch(n), which can be calculated

as: t(n)iterated*t.

[10 marks]

