Problem
a. quote a theorem which guarantees that there exists an orthogonal basis for 
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(with standard inner product) made up of eigenvectors of matrix 
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b. Find such a basis
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.

c. Represent the quadratic form 
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by a symmetric matrix. Is Q positive definite? Justify your answer. 

My explanation
a. I am not sure this is right but here is theorem that we learned in class. 
Theorem 1

Let T be a linear operator on a finite-dimensional real inner product space V. Then T is self-adjoint if and only inf there exists an orthonormal basis 
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 for V consisting of eigenvectors of T. 

( we know that A is self-adjoint if 
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Since A is self-adjoint I guess I can use theorem 1??? 

What is the connection between T and A?? 

b. To find a basis 
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 made up of eigenvectors of matrix A, first of all, we know that we need to find the eigenvalues. Using det(tI-A) I found that 
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and 
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. (please check that it is correct). 

For 
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, I found eigenvectors (-1,1,0) and (-1,0,1) ,and for 
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, eigenvector is (1,1,1) . (please check that it is correct). 
here is my question, I know that (-1,1,0) and (1,1,1) are orthogonal and so    (-1,0,1) and (1,1,1). Also another theorem tells that if 
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are distinct eigenvalues of T with corresponding eigenvectors x and y , then x and y are orthogonal. but how about (-1,1,0) and (1,1,1)??? Obviously they are not orthogonal. Is it because of that they are eigenvectors of same eigenvalues??
c. here is the definition of the positive definite. 

A linear operator T on a finite-dimensional inner product is called positive definite if T is self-adjoint and <T(x),x> >0 for all 
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An n x n matrix A with entries from R or C is called positive definite if 
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 is positive definite. 

Please represent the quadratic form 
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by a symmetric matrix. And verify that Q positive definite. 

Thank you. 
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