
1
Introduction

ObJectives
The objectilles of this chapter are to introduce software engineering and
to provide a framework for understanding the rest of the book. When you
have read this chapter you will:

• understand what software engineering is and why It Is important;

• understand that the development of different types of software
systems may require different software engineering techniques;

• understand some ethical and professional issues that are Important
for software engineers;

• have been introduced to three systems, of dlff'erent types, that will be
used as examples throughout the book.

Contents
1.1 ProfeSSionalsoftware development
1.1 Software engineering ethics
1.3 Case studies

4 Chapter1 • Introduction

\Vccan't TUn the modem world without software. National infrastructures and utili
tics arc controlled by computer-based systems and most electrical product, include a
computer and controlling software. Industrial manufacturing and distribution is
completely computerized, as is the financial system. Entertainment, including the
music industry. computer games, and film and television, is software intensive.
Therefore, software engineering is essential for the functioning of national and inter
national societies.

Software systems arc abstract and intangible. TIley are not constrained by the
properties of materials, governed by physical laws, Or by manufacturing processes.
This simplifies software engineering, as ihere are no natural limits (0 the potential of
software. However, because of the lack of physical constraints, software systems can
quickly become extremely complex, difficult LOunderstand, and expensive to change.

There arc many different types of software systems, from simple embedded sys
terns to complex, worldwide information systems. It is pointless to look for universal
notations. methods, Or techniques for software engineering because different types
of software require different approaches. Developing an organizational information
system is completely different from developing a controller for a scientific inSITU
mcnt, Neither of these systems has much in common with a graphics-intensive com
puter game. All ofthese applications need software engineering; they do not all need
the same software engineering techniques.

There arc still many n..eponsof software projectsgoing wrong and 'software failures'.
SOf1\VarCengineering is criticized as inadequate for modern software development.
However, in my view, many of these so-called software failures arc a consequence of
(\\'0 factors:

I. Increasing demands As new software engineering techniques help us to build
larger, more complex systems, the demands change. Systems have to be buill
and delivered more quickly; larger, even more complex systems arc required;
systems have to have new capabilities that were previously thought to be impos
sible. Existing software engineering methods cannot cope and new software
engineering techniques have to be developed to meet new these new demands.

2. UJu"expectations It is relatively easy to write computer programs without using
software engineering methods and techniques. Many companies have drifted
into software development as their products and services have evolved. They do
not usc software engineering methods in their everyday work. Consequently,
their software is often mote expensive and 'less reliable than it should be. \\le
need better software engineering education and training 10address this problem.

Software engineers can be rightly proud of their achievements. Of COursewe still
have problems developing complex software but. without software engineering, \VC
would not have explored space, would not have thc Imcrnet Ormodern tclccommuni
cations. All forms of travel would be JOOte dangerous and expensive, Software engi
nccring has conmbuted a great deal and I am convinced that ils contributions in the
21 S1 century wi II be even greater,

1.1 • Professional software development 5

() History of software engineering

The notion of 'software engineering' was first proposed in 1968 at a conference. held to discuss what was then
called the 'software crisis' (Naur and Randell, 1969). It became dear that individual approaches to program
development did not scale up to large and complex software systems. These were unreliable, cost more than
expected} and were delivered late.

Throughout the 19705and 19805, a variety of new software- engineering techniques and methods were
developed, such as structured programming.. information hiding and object-oriented development. Tools and
standard notations were developed and are now extensively used.

http:/{www.SoftwareEngineering-9.comjWebjliistory/

Professional software development

LoL' of people write programs. People in business write spreadsheet programs to
simplify their jobs. scientists and engineers write programs to process their cxperi
mental data) and hobbyists write programs for their own interest and enjoyment.
However, the vast majority of software development is a professional activity ..vhcre
software is developed for specific business purposes, for inclusion in other devices,
Or as software products such as information systems, CAD systems, etc. Professional
software, intended for usc by someone apart from its developer, is usually developed
by teams rather than individuals. It is maintained and changed throughout its life.

Software engineering is intended to support professional software development,
rather than individual programming. II includes techniques that support program
specification, design, and evolution, none of which are normall y relevant for per
sonal software development. To help you to get a broad view of what software engi
nccring is about, J have summarized some frequently asked questions in Piguro 1.1.

Many people think that software is simply another word for computer programs.
However, when we arc talking about software engineering, software is not just the
programs themselves but also all associated documentation and configuration data
that is required to make these programs operate correctly. A professionally devel
oped software system is often more than a single program, The system usually con
sisrs of a number of separate programs and configuration files that are used to set up
these programs, 11may include system documentation, which describes the structure
of the system; user documentation, which explains how to use the system, and web
sites for users LOdownload recent product information.

This is One of the important differences between professional and amateur soft
ware development, If you arc writing a program for yourself, no One else \\';11usc it
and you don't have co worry about writing program guides, documenting the pro
gram design, etc. However, if you arc writing software that other people will use and
other engineers will change then you usually have to provide additional information
as well as the code or the program.

6 Chapter1 • Introduction

What is software?

What are the attributes of good software?

What is software engineering?

What are the fundamental software engineering
activities?

What is the difference between softvvare
engineering and computer science?

What is the difference between software
engineering and system engineering?

What are the key challenges facing software
engineering?

What are the costs of software engineering?

What are the best software engineering techniques
and methods?

What differences has the Web made to software
engineering?

Computer programs and associated documentation.
Software products may be developed for a particular
customer or may be developed for a general market

Good software should deliver the required
functionality and performance to the user and should
be maintainable, dependable, and usable.

Software engineering is an engineering discipline that
is coneemed with all aspects of software production.

Software specification. software development.
software validation~and software evolution.

Computer science focuses on theory and
fundamentals; software engineering is concerned
with the practicalities of developing and delivering
useful software.

System engineering is concemed with all aspects of
computer-based systems development including
hardwa,re,software, and process engineering. Software
engineering is part of this more general process.

Coping with increasing diversity,demands for reduced
deliverytimes, and developing trustworthy software.

Roughly60% of software costs are development
costs; 40% are testing costs. For rustom software,
evolution costs often exceed development costs.

While all software projects have to be professionally
managed and developed, different techniques ate
appropriate for different types of system. Forexample,
games should always be developed using a series of
prototypes whereas safety critical control systems
require a complete and anatyzable specification to be
developed. Youcan't, therefore, say that one method
is better than another.

lIle Web has led to the availabilityof software
servioes and the possibility of developing highly
distributed service-based ~ems. Web·based
systems development has led to important advances
in programming languages and software reuse.

Figur. 1.1 Frequently
asked questions about
software

Software engineers arc concerned with developing software products (i.c., soft
ware which can he sold to a customer). There arc two kinds of software products:

l. Generic products These arc stand-alone systems that are produced by a develop
ment organization and sold On the open market to any CU:::lOmCrwho is able co

1.1 .. Professional software development 7

buy them. Examples of this type of product include software for PCs such as
databases. word processors, drawing packages, and project-management tools.
It also includes so..ca11edvertical applications designed for some specific pur..
pose such as library infonnation systems, accounting systems, or systems for
maintaining dental records.

2. Customized (or bespoke) products These are systems that are commissioned by
a particular customer. A software contractor develops the software especially
for that customer. Examples of this type of software include control systems for
electronic devices, systems written to support a particular business process, and
air traffic control systems .

.An important difference between these types of software is that) in generic products,
the organization that develops the software controls the software specification. For CLL~

torn products, the specification is usually developed and controlled by tbe organization
that is buying the software. The software developers must work to that specification.

However, the distinction between these system product types is becoming
increasingly blurred. More and more systems are now being built with a generic
product as a base, which is then adapted to suit the requirements of a customer.
Enterprise Resource Planning (ERp) systems, such as the SAP system, are the best
examples of this approach. Here, a large and complex system is adapted for a COIn..
pan)' by incorporating information about business rules and processes, reports
required, and so on.

When we talk about the quality of professional software, we have to take into
account that the software is used and changed by people apart from its developers.
Quality is therefore not just concerned with what the software does. Rather, it has to
include the software's behavior while it is executing and the structure and organization
of the system programs and associated documentation. This is reflected in so-called
quality or non..functional software attributes. Examples of these attributes axe the soft..
ware's response time to a user query and the understandability of the program code.

The specific set of attributes that you might expect from a software system obvi ..
ously depends on its application. Therefore, a banking system must be secure. an
interactive game must be responsive. a telephone switching system must be reliable)
and so on. These can be generalized into the set of attributes shown in Figure 1.2,
which J believe are the essential characteristics of a professional software system.

1.1.1 Software engineering
Software engineering is an engineering discipline that is concerned with all aspects of
software production from the early stages of system specification through to maintain ..
ing the system after it has gone into use. In this definition. there are two key phrases:

I. Engineering discipline Engineers make things work. They apply theories, meth..
ods, and tools where these are appropriate. However, they use them selectively

8 Chapter1 • Introduction

Maintainability Softvvare should be WTitten in such a way so that it can evolve to
meet the changing needs of customers. This is a critical attribute
because software change is an inevitable requirement of a
changing business environment

Dependabilityand security Software dependability indudes a range of characteristics
includingreliability,security,and safety.Dependablesoftware
should not cause physical or economic damage in the event of
system failure. Malicious users should not be able to access or
damagethe system.

Efficiency Software should not make wasteful use of system resources such
as memory and processor cydes. Efficiency therefore includes
responsiveness, processing time, memory utilization, etc.

Acceptability Softwaremust be acceptable.to the type of users forwhichit is
designed. This means that it must be understandable, usable, and
compatiblewith other systemsthat they use.

FigureT.2 Essential
attributesof good
softvvare

and always try to discover solutions to problems even when there are no appli
cable theories and methods. Engineers also recognize [hat they must work to
organizational and financial constraints so they look fOT solutions within these
constraints.

2.. All aspects ofsoftware production Software engineering is not just concerned
with the technical processes of software development, It also includes activities
such as software project management and the development of tools, methods,
and theories to support software production.

Engineering is about getting results of the required quality within the schedule
and budget This often involves making compromises=-cnginecrs cannot be perfcc
tionists. People ",'filing programs for themselves, hO\A'CVCT,can spend as much time
as they wish On the program development,

Ingeneral, software engineers adopt a systematic and organized approach to their
work, as this is often the most effective way to produce high-quality software.
However, engineering is an about selecting the most appropriate method fot a set of
circumstances So a more creative, less formal approach to development may be
effective in some circumstances. Less formal development is particularly appropri
ate for the development of web-based systems, which requires a blend of software
and graphical design skills.

Software engineering is important for two reasons:

l . More and more, individuals and society rely on advanced software systems. We
need LO be able to produce reliable and trustworthy systems economically and
quickly.

1.1 Professionalsoftwaredevelopment 9

2. It is usually cheaper, in [he long run, to Usc software engineering methods and
techniques for software systems rather than just write the programs as if it was a
personal programming project, For most types of systems, the majority of costs
arc the costs of changing the software after it has gone into usc.

'The systematic approach that is used in software engineering is somcumcs called
a software process. A software process is a sequence of activities that leads to the
production of a software produce. 'There are four fundamental activities that arc corn
mon to all software processes. ll1CSC activities arc:

I. Software specification, where customers and engineers define the software that
is (0 be produced and the constraints On its operation.

2. SOfL\VarCdevelopment, where the software is designed and programmed.

3. Software validation, where the software is checked to ensure that it is what the
customer requires.

4. Software evolution, where the software is modified to reflect changing customer
and market requirements.

Different types of systems need di lfcrent development processes. For example.
real-time software in an aircraft bas to be completely specified before development
begins. In c-commerce systems, the specification and the program are usually devel
oped together. Consequently, these generic activities may be organized in different
ways and described at different levels of detail depending on the type of software
being developed. Idescribe software processes in more detail in Chapter 2.

Software engineering is related to both computer science and systems engineering:

I. Computer science is concerned with the theories and methods that underlie com
putcrs and software systems, whereas software engineering is concerned with the
practical problems of producing software. Some knowledge of computer science
is essential for software engineers in the same way that some knowledge of
physics is essential for electrical engineers. Computer science theory, however, is
often most applicable to relatively small programs. Elegant theories of computer
science cannot always be applied to large, complex problems that require a soft
ware solution.

2. System engineering is concerned with all aspects of the development and evo
lution of complex systems where software plays a major role. System engineer
ing is therefore concerned with hardware development, policy and process
design and system deployment, as well as software engineering, System cngi
nccrs are involved in specifying the system, defining irs overall architecture)
and then integrating the different parts to create the finished system. They are
less concerned with the engineering of the system components (hardware,
software, ctc.).

10 Chapter 1 Introduction

As I discus ...s in the next section, there arc many different types of software ..There is no
universal software engineering method Or technique that is applicable for all of these.
However, there art three general issues that affect many different types of software:

I. Heterogeneity Increasingly, systems are required to operate as distributed systems
aCrOSSnetworks that include different types of computer and mobile devices. A~
well as running On general-purpose computers, software may also have to execute
On mobile phones. You often have to integrate new software with older legacy sys
terns written in different programming languages. The challenge here is to develop
techniques for building dependable software that is flexible enough to cope with
this heterogeneity.

2. Businessand social chang« Business and society are changing incredibly quickly
as emerging economics develop and new technologies become availablc. They
need to be able cochange their existing software and to rapidly develop new soft
ware. Many traditional software engineering techniques arc time consuming and
delivery of new systems often takes longer than planned. They need to evolve so
that the time required for software to deliver value to irs customers is reduced.

3. Security and trust As software is intertwined with aU aspects of Our lives, it is
essential Chatwe can trust that software. This is especially true for remote soft ..
ware systems accessed through a web page or web service interface. ~\/chave to
make SLUt: that malicious users cannot attack our software and that information
security is maintained.

or course, these are not independent issues, For example, it may be necessary to
make rapid changes to a legacy system to provide it with a web service interface. To
address these challenges we will need new tools and techniques as well as innovative
ways of combining and USingexisting software engineering methods.

1.1.2 Software engineering diversity
Software engineering is a systematic approach to the production of software that
takes into account practical cost, schedule, and dependability issues, as well as the
needs of software customers and producers. How this systematic approach is acru
ally implemented varies dramatically depending On the organization developing the
software, the type of software, and the people involved in the development process,
There are no universal software engineering methods and techniques that arc suit
able for all systems and all companies. Rather, a diverse set of software engineering
mctheds and tools has evolved over [he past 5"0years.

Perhaps the most significant factor in determining which software engineering
methods and techniques arc most important is the type of application that is being
developed. There are many different types of application including:

1. Stand-atone applications These arc application systems (hat run On a local corn
purer, sucn as a PC. They include all necessary functionality and do not need 10

1.1 • Professional software development 11

be connected to a network, Examples of such applications are office applica
[ions on a PC, CAD programs, photo manipulation software, ere,

2. Interactive transaction-based applicasions These are applications thai execute
On a remote computer and that arc accessed by users from their O'A'JI_PCsOr
terminals. Obviously. these include web applications such as c-cornmcrce appli
cations where you can interact with a remote system LO buy goods and services.
This class of application also includes business systems, where a business
provides access to irs systems through a web browser or special-purpose client
program and cloud-based services, such as mail and photo sharing. Interactive
applications often incorporate a large data Store that is accessed and updated in
each transaction.

3. Embedded control systems These arc software control systems that control and
manage hardware devices. Numerically, there arc probably more embedded sys
tems than any other type of system. Examples of embedded systems include the
software in a mobile (cell) phone, software that controls anti-lock braking in a
car, and software in a microwave Oven lOcontrol the cooking process.

4. Batch processing ssystems These are business systems that are designed to
process data in large batches. They process large numbers of individual inputs co
create corresponding outpuus. Examples of batch systems include periodic
billing systems, such as phone billing systems, and salary payment systems.

5. Entertainment systems These are systems that arc primarily for personal usc and.
which arc intended to entertain the user. Most of these systems arc games of one
kind Oranother. The quality of the lL~CTinteraction offered is the most important
distinguishing characteristic of entertainment systems.

6. Systems for modeling and. simulation These arc systems Charare developed by
scientists and engineers to model physical processes Or situations, which
include many, separate, interacting objects, These arc often computationally
intensive and require high-performance parallel systems for execution.

7. Data collection systems These arc systems that collect data from their environ
mcnt using a set of sensors and send that data to other systems for processing.
The software has to interact with sensors and often is installed in a hostile cnvi
ronmcnt such as inside an engine or in a remote location.

8. Systems of systems These arc systems that are composed of a number of other
software systems. Some of these may be generic software products> such as a
spreadsheet program. Other systems in the assembly may be specially wriucn
for that environment.

Of course, the boundaries between these system types are blurred. If you develop
a game for a mobile (cell) phone, you have to take into account the same constraints
(power, hardware interaction) as the developers of the phone software. Batch pro
cessing systems arc often used in conjunction with web-based systems. FOi'example,

12 Chapter 1 Introduction

in a company, travel expense claims may be submitted through a web application but
processed in a batch application for monthly payment.

You use different software engineering techniques for each t}'PC of system
because tbc software has quite different characteristics. For example, an embedded
control system in an automobile is safety-critical and is burned into ROM when
installed in the vehicle. 11is therefore very expensive LOchange. Such a system needs
very extensive verification and validation so that the chances of having to recall cars
after sale to fix software problems arc minimized. User interaction is minimal (or
perhaps nonexistent) so there is no need to usc a development process chat relies on
user interface prototyping.

POTa web-basedsystem, an approach based on iterative development and delivery
may be appropriate. with the system being composed of reusable components.
However, such an approach may be impractical for a system of systems. where
detailed specifications of the system interactions have to be specified in advance so
chat each system can be separately developed
Ncvcnhclcss, there are software engineering fundamentals that apply to all types

of software system:

I. They should be developed using a managed and understood development
process. TI,e organization developing the software should plan the development
process and have clear ideas of what will be produced and when iLwill be com
plctcd. Of course, different processes are used for different types of software.

2. Dependability and performance are important for all types of systems. Software
should behave as expected, without failures and should be available for usc
when it is required. It should be safe in its operation and, as far as possible,
should be secure against external attack. The system should perform efficiently
and should not waste reSOurCCS.

3. Understanding and managing the software specification and requirements (what
uic software should do) are important. You have to know what different customers
and users of the system expect front it and you have to manage their expectations
so that a useful system can be delivered within budget and to schedule.

4. You should make as effective use as possible of existing resources. This means
that, where appropriate, you should reuse software that has already been devel
oped rather than write new software.

These fundamental notions of process, dependability, requirements, management,
and reuse arc important themes of this book. Different methods reflect them in dif
fercnt ways but they underlie all professional software development.
You should notice that these fundamentals do nOLcover implementation and pro

gramming.I don't cover specific programming techniques in this book because these
vary dramatically from One type of system to another. For example, a scripting lan
guage such as Rub)' is used for web-based system programming but would be com
pletely inappropriate for embedded systems engineering.

1.1 • Professional software development 13

1.1.3 Software engineering and the Web
The development of the World Wide Web has had a profound effect on all of Our
lives. Initially, the Web was primarily a universally accessible information store and
it had little effect on software systems. These- systems ran on local computers and
were only accessible Irorn within an organization. Around 2000, the Web started to
evolve and mOTC and more functionality was added to browsers. This meant Chat
web-based systems could be developed where, instead of a special-purpose user
interface, these systems could be accessed using a web browser.This led to [he
development of a vast range or new system products that delivered innovative serv
ices, accessed over the Web. These are often funded by adverts !hat arc displayed on
the user's SCreen and do not involve direct payment from users.
As well as these system products, (he development of web browsers that could

TunSInal)programs and do some local processing led to an evolution in business and
organizational software. Instead ofwriting software and deploying iLOnusers' PCs,
the software was deployed On a web S(,'T\'Cr.This made it much cheaper to change
and upgrade the software, as there was no need to install the software Onevery PC. It
also reduced costs, as IlSCr interface development is particularly expensive.
Consequently, wherever it ha..s been possible to do so, Irian), businesses have moved
to web-based interaction with company software systems.
The next stage in the development of web-based systems was the notion of web

services. Web services are software components Chatdeliver specific, useful function
alit)' and which are accessed over the web. Applications arc constructed by integrating
these web services, which may be provided by different companies. In principle, this
linking can bedynamic so that an application may use different web services each time
thai it is executed, I cover this approach to software development in Chapter 19.
In the last ICwyears, the nouon of 'software as a service' has been developed, It

has been proposed that software will not normally run On local computers but will
TunOn 'computing clouds' thai arc accessed over the Internet If you lL~Ca service
such Mweb-based mail, you arc using a cloud-based system. A computing cloud is
a huge number of Iinkcd computer systems that is shared by many users. Users do
not buy software but pay according to how much (he software is used or 3rC·given
tree acccess in return for watching adverts chararc displayed Ontheir SCreen.
The advent of the web, therefore, has led to a signi (icant change in the way that

business software is organized. Before the web, business applications were mostly
monolithic, single programs funning On Single computet's or computer clusters.
Communications were local, within an organization. Now, software is highly distrib ..
utcd, sometimes aCrOSSthe world. Business applications arc not programmed from
scratch but involve extensive reuse of components and programs.
TIlls radical chango in software organization has, obviously, ted to changes in the

ways that web-based systems 31'e engineered. Pol' example:

1. Software rCUW has become the dominant approach fOTconstructing web-based
systems. When building these systems. you think about how you can assemble
them from pre..existing software components and systems.

14 Chapter 1 Introduction

2. II is now generally recognized that it is impractical to specify all the require
ments for such systems in advance. Web-based systems should be developed
and delivered incrementally.

3. User interfaces are constrained by thc capabilities of web browsers. Although
rcchnologics such as AJAX (Holdener, 20(8) mean thai rich interfaces can be
created within a web browser, these technologies are still difficult to usc. Web
forms with local scripting arc more commonly used Application interfaces on
web-based systems are often poorer than the specially designed user interfaces
OnPC system prOdUCL';.

TL1c fundamental ideas of software engineering, discussed in the previous section,
apply to web-based software in the same way that they apply to other types of soft
'A/arcsystem. Experience gained with large system development in the 20th century
is still relevant to web-based software.

Software engineering ethics

Like other engineering disciplines. softy/arc engineering is carried our within a
social and legal framework that limits the freedom of people working in that area. A.~
a software engineer, you must accept that your job involves wider responsibilities
than simply [he application of technical skills. You must also behave in an ethical
and morally responsible way if you arc to be respected a, a professional engineer,
II goes without saying that you should uphold normal standards of honesty and

integrity. You should not Uscyour skills and abilities to behave in a dishonest way or
in a way that will bring disrepute to the software engineering profession. However,
there arc area'; where standards of acceptable behavior are not bound by laws but by
the more tenuous notion of professional responsibility. Some of these are:

I. ConfidentialityYou should normally respect the confidentiality of' your employ
ers Or clients irrespective of whether Or not a formal confidcntialiry agreement
bas been signed.

2. Competence You should not misrepresent your level of competence. You should
not knowingly accept work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the LL';C
(if intellectual property such a, patents and copyright. You should be careful to
ensure that the intellectual property of employers and clients is protected,

4. Computer misuse You should not usc your technical skills LOmisuse other
people's computers. Computer misuse ranges from relatively trivial (game playing
On an employer's machine, say) to extremely serious (dissemination of viruses Or
oilier malware).

1.2 • Software engineering ethics 15

Software Engineering Cod. of EtI1icsand Promsional Practice

.ACM/IEEEMCSJoint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE
The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are
induded in the fun version give examples and details of how these. aspirations change the way we act as
software engineering professionals. VVithoutthe aspirations, the details can become legalistic and tedious;
without the details, the aspirations can become high sounding but empty; together, the aspirations and the
details form a cohesive code.

Software engineers shall commit themselves to making the analysis/ specification, design, development.
testing and maintenance of software a beneficial and respected profession. In accordance with their
commitment to the health, safety and welfare of the public,softwine engineers shall adhere to the following
EightPrinciples:

1. PUBLIC - Software engineers shall act consistently with the public interest.
2. CLIENT AND E~IPLOYER - Software engineers shall act in a manner that is in the

best interests of their client and employer consistent with the public interest.
3. PRODUCT - Software engineers shall ensure that their products and related

mod; ficat; ons meet the. highest profes s t ona 1 standa rds poss ;'b1e.
4. JUDG~IENT - Software engineers shall maintain integrity and independence in their

professional judgment.
5. r~AIiAGEME!lT- Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and
maintenance.

6. PROFESSION - Soft\>lareengi neers shall advance the integrity and reputati on o-f
the profession consistent with the public interest.

7. COLLEAGUES - Soft\>lareengineers shall be fair to and supportive of their
co 11eagues.

8. SELF - Soft,'Iare en-gineers sha 11 part ictpate in 1ifelong 1ea rnin9 regardi n9 the
practice of their profession and shall promote. an ethical approach to the.
practice of the profession.

Figure 1.3 The
ACM/lEEECode of
Ethics (-~ IEEE/ACM
t999)

Professional societies and institutions have an important role to play in setting
ethical standards. Organizations such as the ACM, lite lBEE (Institute of Electrical
and Electronic Engineers), and the British Computer Society publish a code of
professional conduct or code of ethics. Members of these organizations undertake to
follow that code when they sign up for membership. These codes of conduct arc gcn
crally concerned with fundamental ethical behavior.

Professional associations, notably thc ACM and thc lEEE, have cooperated to
produce a joint code of ethics and professional practice. This code exists in both a
short form, shown in Figure 1.3,and a longer form (Gottcrbam et al., 1999) that adds
detail and substance to the ShOtLCrversion. The rationale behind this code is summa
rizcd in the first two paragraphs of the longer form:

Computers have a central and growing role in.(.'()lnl11erce~industry, government,
medicine, education, ensertainnumt and society at large. Softwar« engineers are
those who contribute hy direct participation. or by teaching, to the analysis, spec
ification, design; d.evelopnlcnt, certification, maintenance and testing ofsoftwar«

16 Chapter 1 • Introduction

systems. Because of their roles in developing software systems, software engi
neers have significemt opportunities to do good or cause harm, to enable others to
do good or cause harm, or to influence others to do good or cause harm. To
ensure.. asmuch as possible, tha: their ejJfJrlS will be used for good) software engi ..
neers must commit themselves to making software engineering it beneficial. and
respected profession: In accordance witt: that commitment, software engineers
shall adhere fa the following Code 01 Ethics and Professiona; Practice.

The Code contains eight Principles related to the behaviour of atUll/.ecisiolls
made by professional software engineers, including practitioners, educators,
11lanagers, supervisors and policy makers, as well as trainees and students of
the profession. The Principles identify the ethically responsible relationships
in which individuals, groups, lind organizations participate lind the primary
obligations within these relationships. The Clauses of each Principle are illus
trations of sonte oj' the obligations included in these relationships. These obli ..
gutions are founded ill. thi! software engineer's humanity, in.special ca,re owed
to people affected by the work ofsoftware engineers, and the unique elements
of the practice oj' software engineering. Tire COlle prescribes the ...·e as ohliga ..
tions of lUt)'OfU! claiming to be or aspiring to be a software engineer.

In any situation where different people have different views and objectives you
are likely to bc faced with ethical dilemmas, For example, if you disagree, in princi
ple, with the policies of more senior management in the company, how should you
react? Clearly, this depends On the particular individuals and the nature 01'the dis
agreement. L~it best to argue a case for your position from within the organization or
to resign in principle? II' you fed chat there are problems with a software project,
when do you reveal these to management? If YOLIdiscus..s these while they arc just a
suspicion. you may be overreacting to a situation; if you leave it lOOlate, it may be
impossible to rcsolve the difficulties.

Such ethical dilemmas fare all of us in our professional lives and, "fortunately,in
most cases the)' arc either relatively minor Orcan be resolved without too much dif
ficulry. Where they cannot be resolved, the engineer is faced with, perhaps, another
problem, The principled action may be to resign from their job but this may well
affect others such M their partner Or their children.

A particularly difficult situation for professional engineers arises when their
employer acts in an unethical way, Say a company is responsible for developing a
safcry-cruical system and, because of time pressure, falsities the safely validation
records. Is the engineer's responsibility to maintain confidentiality Or LO alert the
customer or publicize, in some way, that the delivered system may be unsafe?

The problem here is that there arc no absolutes when it COmesto safety. Although
the system may not have been validated according to predefined criteria, these crite
ria may be too strict. TI,e system rna)' actually operate safely throughout it~ lifetime.
It is also the case that, even when properly validated, the system rna)' fail and cause
an accident. Early disclosure of problems may result in damage COthe employer and
other employees; failure to disclose problems may result in damage to others.

1.3 • Casestudies 17

Youmust make up your Own mind in these matters. The appropriate ethical posi
tion hero depends entirely On the V1C'iVS of the individuals who arc mvolved, In this
case, the potential for damage, the extent of the damage, and the people affected by
the damage should influence the decision. If the situation is very dangerous, it may
be justified to publicize it using the national press (say). However, you should
always try to resolve the situation while respecting Ute rights of your employer.

Another ethical issue is participation in the development of military and nuclear
systems. Some people feel strongly about these issues and do not wish 10participate in
any systems development associated with military systems. Others will work On mili
tary systems but not on weapons systems. Yet others feel that national security is an
overriding principle and have no ethical objections to workingOnweapons systems.

In this Situation, it is important that both employers and employees should make
their viC\\IS known to each other in advance. Where an organization is involved in
military or nuclear work, they should be able 10specify that employees must be will
ing to accept any work asslgnmcnt. Equally, if an employee is taken on and makes
clear that they do not wish 10work on such systems, employers should not put pres
sure On them to do so at some later dale.

The general area of ethics and professional responsibility is becoming more
important as software-intensive systems pervade every aspect of work and everyday
life. 11can be considered from a philosophical standpoint where the basic principles
of ethics arc considered and software engineering ethics arc discussed with reference
lOthese basic principles. This is the approach taken by Laudon (1995) and to a lesser
extent by Huff and Martin (1995) . Johnson's text On computer ethics (200 I) also
approaches the topic from a philosophical perspective.

However, I find that this philosophical approach is too abstract and difficult 10
relate to everyday experience. I prefer the more COncreteapproach embodied in code.s
of conduct and practice. I think that ethics arc best discussed in a software engineer
ing context and not as a subject in their own right. In this book, therefore, I do not
include abstract ethical discussions but, where appropriate, include example..s in the
exercises that can be the starting point for a group discussion Onethical issue,s.

Case studies

To illustrate software engineering concepts, I use examples from three different
types of systems throughout the book. The reason why I have nor used a Single case
study is lhal one of the key messages in this book is thai software engineering prac
lice depends Onthe type of systems being produced. 1therefore choose an appropri
ate example when discussing concepts such as safety and dependability, system
modeling, reuse, etc.

The three types of systems that I uscMcase studies arc:

I. An embedded system.This is a system where the software controls a hardware
device and is embedded in that device. Issues in embedded systems typically

18 Chapter 1 Introduction

include physical size, responsiveness, power management, etc. The example or an
embedded system that 1CL<iCis a software system to control a medical dc'lice.

2. An information. systCIJIThis is a system whose primary purpose is to manage
and provide access to a database of information. Issues in information systems
include security, usability; privacy, and maintaining data integrity. The example
of an information system that 1use is a medical records system.

3. A sensor-based dati' collection system.This is a system whose primary purpose
is to COnCCI data from a set of sensors and process that data in some way. The
key requirements of such systems arc reliability, even in hostile environmental
conditions, and maintainability, The example of a data collection system that
1use is a wildernesss weather station.

I introduce each of these systems in this chapter, with more information about
each of them available On the Web.

1.3.1 An insulin pump control system
An insulin pump is a medical system that simulates rhc operation of the pancreas (an
internal organ). The software controlling this system is an embedded system, which
collects information from a sensor and controls a pump that delivers a controlled
dose of insulin to a user,
People who suffer from diabetes usc the system. Diabetes is a relatively common

condition where the human pancreas is unable to produce sufficient quantities of a
hormone called insulin. Insulin mcraboliscs glucose (sugar) in the blood. The COn
ventional trcatmcnt of diabetes involves regular injections of genetically engineered
insulin. Diabcrics measure their blood sugar levels using an external meter and then
calculate the dose of insulin that they should inject.
The problem with this treatment is that the level of insulin required docs not just

depend on the blood glucose level but also on the lime of the last insulin injection.
This can lead to very low levels of blood glucose (if there is lOO much insulin) or very
high levels of blood sugar (if there is lOOlittle insulin). Low blood glucose is, in the
short term, a more serious condition as it can result in temporary brain malfunctioning
and. ultimately, unconsciousness and death. In the long term. however, continual high
levels of blood glucose can lead to eye damage, kidney damage, and heart problems.
Current advances in developing miniaturized sensors have meant that it is nO\'1pos

sible to develop automated insulin delivery systems. These systems monitor blood sugar
levels and deliver an appropriate dose of insulin when required.Insulin delivery systems
like this already exist for the treatment of hospital patients. In the future, it maybe pos
sible for many diabetics ro have such systems permanently auachcd lOtheir bodies.
A soltwarc-controllcd insulin delivery system might work by using a micro

sensor embedded in the patient to measure some blood parameter that is proportional
to the sugar level. This is then sent to the pump controller. This controller computes
the sugar level and the amount of insulin that is needed. Jt then sends signals to a
miniaturized pump to deliver the insulin via a permanently attached needle.

1.3 • Casestudies 19

Figure 1.4 Insulin
pump hardware

Figure 1.5 Activity
model of the insulin
pump

..... Iin IIasaMIir

I Needle ~ I Pump Oock IAssembly I I

r
I Sensor : : Controller a

I I
I Displayl I I DisPlay21

_SUpply

Control Insulin
Pump Log Dose

Figure 1.4 shows the hardware components and organization of the insulin
pump. To understand the examples in this book, all you need co Know is that the
blood sensor measures the electrical conductivity of the blood under different
conditions and thaI these values can be related to the blood sugar level. The
insulin pump delivers One unit of insulin in response to a single pulse from a con
troller, Therefore, to deliver I() units of insulin, Ihe controller sends 10 pulses to
the pump. Pigure 1.5 is a UML activity model that illustrates how the software
transforms an input blood sugar level to a sequence of commands that drive the
insulin pump.

Clearly, this is a safety-critical system. If the pump fails 10operate Or docs not
operate correctly, then the user's health may be damaged Or they may fall into a
coma because their blood sugar levels arc roo high Or too low, There arc, therefore,
two essential high-level requirements that this system must meet:

I. The system shall be available to deliver insulin when required.

2. The system shall perform reliably and deliver the correct amount of insulin to
counteract the CLUTCnC level of blood sugar.

20 Chapter 1 • Introduction

~

~

I MHC·PMS MHC·PMS
Local Local

1 7
MHC-PMSServer

I I
Figure 1.6 The
organization of
theMHC-PMS I

Patient Database II!
L,--, --'~

11,e system must therefore he designed and implemented 10ensure thai the sys
tern always meers these requirements. More derailed requirements and discussions
of how to ensure that the system is safe arc discussed in later chapters.

1.3.2 A patient information system for mental health care
A patient information system 10support menial health care is a medical informa
tion system that maintains information about patients suffering from mental
health problems and the treatments that they have received. Most mental health
patients do not require dedicated hospital treatment but need to attend specialist
clinics regularly where they can meet a doctor who has detailed knowledge of
their problems. To make it easier for patients 10attend, these clinics arc not just
Tun in hospitals. They may also be held in local medical practices Or community
centers.
The MHC-PMS (Menial Health Care-Patient Management System) is an informa

tion system that is intended for usc in clinics. It makes usc of a centralized database of
patient information but has also been designed 10 run Ona PC, so thai it may be accessed
and used from sites that do nOIhave secure network connectivity. Wben the local sys
terns have secure network access, they IlSC patient information in the database but they
can download and usc local copies of patient records when they arc disconnected, The
system is not a complete medical records system so docs not maintain information
about other medical conditions. However, it may interact and exchange data with other
clinical information systems, Figure 1.6illustrates the organization of the MHC·PMS.
The lVlHC·PMShas two overall goals:

J. "It) generate management information that allows health service managers to
assess performance against local and government targets.

2. To provide medical staff with timely information to support the treatment of
patients.

1.3 • Case studies 21

'The nature of mental health problems is such that patients arc of len disorganized
so may miss appointments, deliberately Or accidentally lose prescriptions and med
ication, forget instructions, and make unreasonable demands Onmedical staff, Tiley
may drop in On clinics unexpectedly. In a minority of cases, they may be a danger to
themselves Or to other people. They may regularly change address Ormay be home
less on a long-term Or short-tern. basis. Where patients arc dangerous, they may need
lO be 'sectioned'<-confined ro a secure hospital for treatment and observation.

Users of the system include clinical staff such as doctors, nurses, and hcauh visi-
10rS(nurses who visit people at home to check On their treatment). Nonmedical U.SCrS
include receptionists who make appointments, medical records staff who maintain
the records system, and administrative staff who generate reports.
The system is used 10 record information about patients (name. address, age. next

of kin, ctc.), consultations (date, doctor seen, subjective impressions of the patient,
ctc.), conditions, and treatments. Reports arc generated at regular intervals for med
ical seaff and health authority managers. Typically, reports for medical stall' focus On
information about individual patients whereas management reports are anonyrnized
and arc concerned with conditions. costs of treatment, CLeo

'The key features of the system arc:

I. Individual care ItJlnla.genrent Clinicians can create records for patients, edit the
information in the system, view patient history, etc. The system supports data
summaries so that doctors who have not previously mer a patient can quickly
learn about the key problems and trcarmcnts that have been prescribed.

2. Patient monitoring TIle system regularly monitors the records of patients. that
arc involved in treatment and issues warnings ifpossible problems arc detected.
Therefore, if a patient has not seen a doctor for some lime, a warning may be
issued. (me of the most important clements of the moniroring system is to keep
track of patients who have been sectioned and lOensure that the legally required
checks arc carried out at the right time.

3. Administrative reporting The system generates monthly management reports
showing the number of patients treated at each clinic, the number of patients
who have entered and left the care system, number of patients sectioned, the
drags prescribed and their costs, etc.

Two different laws affect the system. These arc laws On data protection that govern
the confidentiality of personal information and mental health laws that govern the toto
pulsory detention of patients deemed to be a danger to themselves Or others. Mental
health is unique in this respect as it is the only medical speciality that can recommend
the detention of patients against their will. This is subject to vcry strict legislative safe
guards. One of the aims of the MHC-PMS is lOensure that stall' always act in aCCOr
dance with the law and lhat their decisions are recorded for judicial review if necessary,

As in all medical systems, privacy is a critical system requirement. It is essential that
patient information is confidential and is never disclosed [0 anyone apart from author
ized medical stail' and the patient themselves. The MHC-PMS is also a safety-critical

22 Chapter 1 :I Introduction

Figure 1.7 Theweather
station's environment

-=-:1. r-----l
«system» «system»

We.atherStation Data Management
and Archiving

---,
«system»

Station Maintenance

system. Some mcneal illnesses cause patients to become suicidal or a danger to other
people, Wherever possible, the system should warn medical staff about potentially sui
cidal Ordangerous patients.

The overall design of the system has to take into account privacy and safely
requirements. The sysrcm m(L~1be available when needed otherwise safety may be
compromised and it rna)' be impossible LOprescribe the correct medication LOpatients,
There is a potential conflict here-privacy is easiest to maintain when there is only a
single copy of the system data. HO\VCVCTt to ensure availability in the event of server
failure Orwhen disconnected from a network, multiple copies of the data should be
maintained. I discuss the tradc-offs between these requirements in later chapters,

1.3.3 Awilderness weather station
To help monitor climate change and 10improve the accuracy of weather forecasts ill
remote areas, the government of a country with large areas of wilderness decides to
deploy several hundred weather stations in remote areas. These weather stations col
lcct data from a sec of instruments that measure temperature and pressure, sunshine.
rainfall, wind speed, and wind direction.

Wildernc..ss weather stations arc part of a larger system (Figure 1.7). which is a
weather information system that collects data from weather stations and makes it
available to other systems for processing. The SYStCTnSin Figure 1.7 arc:

I. The weather station system This is responsible for collecting weather data)
carrying Out some initial data processing, and transmiuing it to the daLa manage
mcnt system.

2. The data management and archiving system TIJis system COtfCCL<; the data from
all of the wilderness weather stations. carries (Jut data processing and analysis,
and archives the data in a form that cart be retrieved by other systems, such as
weather forecasting systems.

3. The station. maintenance system. This system can communicate by satellite
with all wilderness weather stations LO monitor the health of these systems and
provide reports of problems. 1£ can update the embedded software in these
SystCTIlS. ln the event of system problems, this SYStCTIl can also be used to
remotely control a wilderness weather system.

1.3 • Case studies 23

In Figure 1.7, Ihave used the UML package symbol to indicate that each system
is a collection of components and have identified the separate systems. using the
UML stereotype «system». The associations between [he packages indicate there is
an exchange of information but, at this stage, then! is no need to define them in any
more detail.
Each weather station includes a number of instruments that measure weather

parameters such as the wind speed and direction) the ground and air temperatures,
the barometric pressure, and the rainfall over a 24-hour period. Bach of these instru
ments is controlled by a software system that takes parameter readings periodically
and manages the data collected from tho instruments.

The weather station system operates by collecting weather observations at frc
quent intervals-for example, temperatures arc measured every minute. However,
because the bandwidth to the satellite is relatively narrow, the weather SUtLlOncarries
out some local processing and aggregation of the data. It then transmits ibis aggrc
gated data when requested by the data collection system. If, for whatever reason, it is
impossible to make a connection, then the weather station maintains the. data locally
until communication can be resumed

Each weather station is battery-powered and must be entirely self-contained=there
arc no cxn..nnalpower Or network cables available. All communications arc through a rcl
ativcly slow-speed satellite 1inkand the weather station must include some mechanism
(solar or wind power) lO charge its batteries. As they arc deployed in wilderness areas,
they arc exposed to severe environmental conditions and may be damaged by animals.
The station SOft",,3rCis thereforenot just concerned with data collectionIt must also:

) . Monitor the instruments. power, and communication hardware and report faults
to the management system.

2. Manage the. system power, ensuring that batteries arc charged whenever the
environmental conditions permit but also that generators arc shut down in
potentially damaging weather conditions, such as high wind.

3. Allow for dynamic reconfigurauon where parts of the software arc replaced
with new versions and where backup instruments arc switched into the system
in the event of system failure.

Because weather stations have to be sel f-containcd and unattended, this means
that the software installed is complex, even though the data collection functionality
is fairly simple.

24 Chapter 1 Introduction

KEY POINTS

• Software engineering is an engineering discipline that is concerned with all aspects of software
production.

Software is not just a program or programs but also includes documentation. Essential software
product attributes are maintainability, dependability, security, efficiency, and acceptability.

• The software process includes all of the activities involved in software development. The high
level activities of specification, development, validation, and evolution are part of all software
processes.

• The fundamental notions of software engineering are universally applicable to all types of
system development. These fundamentals include software processes, dependability, security,
requirements, and reuse.

There are many different types of systems and each requires appropriate software engineering
tools and techniques for their development. There are few, if any, specific design and
implementation techniques that are applicable to all kinds of systems.

• The fundamental ideas of software engineering are applicable to all types of software systems.
These fundamentals include managed software processes, software dependability and security,
requirements engineering, and software reuse.

• Software engineers have responsibilities to the engineering profession and society. They should
not simply be concerned with technical issues.

• Professional societies publish codes of conduct that set out the standards of behavior expected
of their members.

FURTHER READING

'No silver bullet: Essence and accidents of software engineering'. In spite of its age, this paper is a
good general introduction to the problems of software engineering. The essential message of the
paper still hasn't changed. (F. P.Brooks, IEEEComputer, 20 (4), April 1987.)
http://doi.ieeecomputersociety.org/10.1109/MC.1987.1663S32.

'Software engineering code of ethics is approved'. An article that discusses the background to the
development of the ACM/IEEECode ofEthics and that includes both the short and long form ofthe
code. (Comm. ACM, D.Gotterbarn, K. Miller, and S. Rogerson, October 1999.)
http://portal.acm.org/citation.cfm?doidQ31766S.317682.

Professional Issues in Software Engineering. This is an excellent book discussing legal and
professional issues as well as ethics. I prefer its practical approach to more theoretical texts on
ethics. (F. Bott, A. Coleman, J. Eaton and D.Rowland, 3rd edition, 2000, Taylor and Francis.)

Chapter 1 Exercises 2S

IEEESoftware, March/Apri/2oo2. This is a special issue of the magazlne devoted to the
development of Web·based software. This area has changed very quickly so some articles are a little
dated but most are still relevant. (IEEESoftware, 19 (2), 2002.)
http://wWW2 .computer.org/ portal/web/software.

'A View of zoth and 21st Century Software Engineering'. A backward and forward look at software
engineering from one of the first and most distinguished software engineers. Barry Boehm identifies
timeless software engineering principles but also suggests that some commonly used practices are
obsolete. (B. Boehm, Proc. 28th Software Engineering coni,Shanghai. 2006.)
http://doi.ieeecomputersociety.org/10.114S/113428S·1134288.

'Software Engineering Ethics'. Special issue of IEEEComputer, with a number of papers on the topic.
(IEEEComputer, 42 (6), June 2009.)

EXERCISES

1.1. Explain why professional software is not just the programs that are developed for a customer.

1.2. What is the most important difference between generic software product development and
custom software development? What might this mean in practice for users of generic software
products?

1.3. What are the four important attributes that all professional software should have? Suggest
four other attributes that may sometimes be significant.

1.4. Apart from the challenges of heterogeneity, business and social change, and trust and
security, identify other problems and challenges that software engineering is likely to face in
the 21st century (Hint: think about the environment).

1.5. Based on your own knowledge of some of the application types discussed in section 1.1.2,
explain. with examples, why different application types require specialized software
engineering techniques to support their design and development.

1.6. Explain why there are fundamental ideas of software engineering that apply to all types of
software systems.

1.7. Explain how the universal use of the Web has changed software systems.

1.8. Discuss whether professional engineers should be certified in the same way as doctors or
lawyers.

1.9. For each ofthe clauses in the ACM/IEEECode of Ethics shown in Figure 1.3, suggest an
appropriate example that illustrates that clause.

1.10. Tohelp counter terrorism, many countries are planning or have developed computer systems
that track large numbers of their citizens and their actions. Clearly this has privacy
implications. Discuss the ethics of working on the development of this type of system.

26 Chapter 1 • Introduction

REFERENCES

Gotterbam, D., Miller, K. and Rogerson, S. (1999). Software Engineering Code of Ethics is Approved.
Comm. ACM, 42 (.0), 102-7.

Holdener, A. T. (2008). Aiax: The Definitive Guide. Sebastopol, Ca.: O'Reilly and Associates.

Huff, C. and Martin, C. D. (1995). Computing Consequences: A Framework for Teaching Ethical
Computing. Comm. ACM, 38 (.2), 75-84.

Johnson, D. G. (2001). Computer Ethics. Englewood Cliffs, NJ:Prentice Hall.

Laudon, 1<. (1995). Ethical Concepts and Information Technology. Comm. ACM, 38 (12), 33-9.

Naur, P.and Randell, B. (1969). Software Engineering: Report on a Conference sponsored by the
NATOScience Committee, Garmisch, Germany. 7th to nth October 1968.

	04.pdf
	05.pdf
	06.pdf
	07.pdf
	08.pdf
	09.pdf
	10.pdf
	11.pdf
	12.pdf
	13.pdf
	14.pdf
	15.pdf
	16.pdf
	17.pdf
	18.pdf
	19.pdf
	20.pdf
	21.pdf
	22.pdf
	23.pdf
	24.pdf
	25.pdf
	26.pdf

