3. Now let's consider solutions to the wave equation with only one boundary, at $x=0$.

$$
\left\{\begin{aligned}
\frac{\partial^{2} u}{\partial t^{2}}(x, t) & =c^{2} \frac{\partial^{2} u}{\partial x^{2}}(x, t), & & (x, t>0) \\
u(0, t) & =0, & & (t>0) \\
u(x, 0) & =f(x), & & (x>0) \\
\frac{\partial u}{\partial t}(x, 0) & =g(x), & & (x>0)
\end{aligned}\right.
$$

Start with the function $v(x, t)=\frac{\partial u}{\partial t}(x, t)+c \frac{\partial u}{\partial x}(x, t)$.
What PDE does $v(x, t)$ solve?
Show that $v(x, t)=g(x+c t)+c f^{\prime}(x+c t)$ for all $x, t \geq 0$.

4 and 5. Now solve the first-order PDE $\left\{\begin{aligned} \frac{\partial u}{\partial t}(x, t)+c \frac{\partial u}{\partial x}(x, t) & =v(x, t), & & (x, t>0) \\ u(0, t) & =0, & & (t>0) \\ u(x, 0) & =f(x), & & (x>0)\end{aligned}\right.$
Note: The solution formula is different depending on whether $x>c t$ or $x<c t$. Treat these two cases separately.

