
Reverse-Engineering
Mathew Schwartz

November 12, 2001 (Computerworld)

Whether it's rebuilding a car engine or diagramming a sentence, people can learn about 
many things simply by taking them apart and putting them back together again. That, in a 
nutshell, is the concept behind reverse-engineering—breaking something down in order to 
understand it, build a copy or improve it. 

A process that was originally applied only to hardware, reverse-engineering is now applied 
to software, databases and even human DNA. Reverse-engineering is especially important 
with computer hardware and software. Programs are written in a language, say C++ or Java, 
that's understandable by other programmers. But to run on a computer, they have to be 
translated by another program, called a compiler, into the ones and zeros of machine 
language. Compiled code is incomprehensible to most programmers, but there are ways to 
convert machine code back to a more human-friendly format, including a software tool called 
a decompiler. 

Reverse-engineering is used for many purposes: as a learning tool; as a way to make new, 
compatible products that are cheaper than what's currently on the market; for making 
software interoperate more effectively or to bridge data between different operating systems 
or databases; and to uncover the undocumented features of commercial products. 

A famous example of reverse-engineering involves San Jose-based Phoenix Technologies 
Ltd., which in the mid-1980s wanted to produce a BIOS for PCs that would be compatible 
with the IBM PC's proprietary BIOS. (A BIOS is a program stored in firmware that's run when 
a PC starts up; see Technology QuickStudy, June 25.) 

To protect against charges of having simply (and illegally) copied IBM's BIOS, Phoenix 
reverse-engineered it using what's called a "clean room," or "Chinese wall," approach. First, 
a team of engineers studied the IBM BIOS—about 8KB of code—and described everything it 
did as completely as possible without using or referencing any actual code. Then Phoenix 
brought in a second team of programmers who had no prior knowledge of the IBM BIOS and 
had never seen its code. Working only from the first team's functional specifications, the 
second team wrote a new BIOS that operated as specified. 

The resulting Phoenix BIOS was different from the IBM code, but for all intents and purposes, 
it operated identically. Using the clean-room approach, even if some sections of code did 
happen to be identical, there was no copyright infringement. Phoenix began selling its BIOS 
to companies that then used it to create the first IBM-compatible PCs. 

Other companies, such as Cyrix Corp. and Advanced Micro Devices Inc., have successfully 
reverse-engineered Intel Corp. microprocessors to make less-expensive Intel-compatible 
chips. 

Few operating systems have been reverse-engineered. With their millions of lines of code—
compared with the roughly 32KB of modern BIOSs—reverse-engineering them would be an 
expensive option. 

But applications are ripe for reverse-engineering, since few software developers publish their 

Page 1 of 3Reverse-Engineering

9/2/2012http://www.computerworld.com/s/article/print/65532/Reverse_Engineering?t...



source code. Technically, an application programming interface (API) should make it easy for 
programs to work together, but experts say most APIs are so poorly written that third-party 
software makers have little choice but to reverse-engineer the programs with which they want 
their software to work, just to ensure compatibility. 

Ethical Angles

Reverse-engineering can also expose security flaws and questionable privacy practices. For 
instance, reverse-engineering of Dallas-based Digital: Convergence Corp.'s CueCat 
scanning device revealed that each reader has a unique serial number that allows the 
device's maker to marry scanned codes with user registration data and thus track each user's 
habits in great detail—a previously unpublicized feature. 

Recent legal moves backed by many large software and hardware makers, as well as the 
entertainment industry, are eroding companies' ability to do reverse-engineering. 

"Reverse-engineering is legal, but there are two main areas in which we're seeing threats to 
reverse-engineering," says Jennifer Granick, director of the law and technology clinic at 
Stanford Law School in Palo Alto, Calif. One threat, as yet untested in the courts, comes from 
shrink-wrap licenses that explicitly prohibit anyone who opens or uses the software from 
reverse-engineering it, she says. 

The other threat is from the Digital Millennium Copyright Act (DMCA), which prohibits the 
creation or dissemination of tools or information that could be used to break technological 
safeguards that protect software from being copied. Last July, on the basis of this law, San 
Jose-based Adobe Systems Inc. asked the FBI to arrest Dmitry Sklyarov, a Russian 
programmer, when he was in the U.S. for a conference. Sklyarov had worked on software 
that cracked Adobe's e-book file encryption. 

The fact is, even above-board reverse-engineering often requires breaking such safeguards, 
and the DMCA does allow reverse-engineering for compatibility purposes. 

"But you're not allowed to see if the software does what it's supposed to do," says Granick, 
nor can you look at it for purposes of scientific inquiry. She offers an analogy: "You have a 
car, but you're not allowed to open the hood." 

The Clean-Room Approach To Reverse-
Engineering

Page 2 of 3Reverse-Engineering

9/2/2012http://www.computerworld.com/s/article/print/65532/Reverse_Engineering?t...



Schwartz is a freelance writer in Arlington, Mass. Contact him at Mat@PenandCamera.com.

One person or 
group takes a 
device apart 
and describes 
what it does in 
as much detail 
as possible at 
a higher level 
of abstraction 
than the 
specific code. 

That 
description is 
then given to 
another group 
or person who 
has absolutely 
no knowledge 
of the specific 
device in 
question.

This second 
party then 
builds a new 
device based 
on the 
description. 
The end result 
is a new 
device that 
works 
identically to 
the original 
but was 
created 
without any 
possibility of 
specifically 
copying the 
original. 

Page 3 of 3Reverse-Engineering

9/2/2012http://www.computerworld.com/s/article/print/65532/Reverse_Engineering?t...


