
1

Project 4

This programming project involves writing a program to manage a student database. The interface to
the program should be a GUI that looks similar to the following:

A combo box should allow the user to select one of the four database actions shown. The database
should be implemented as a HashMap, with the ID field as the key and a student record consisting of a
name and major as the value. The operation should be performed when the user clicks the Process
Request button. If the user attempts to insert a key that is already in the database an error message
should be displayed using a JOptionPane message dialog box. If the user attempts to delete, find or
update a record that is not in the database, a message should also be displayed. After each successful
operation is completed a JOptionPane window should be displayed confirming the success. In the case
of a successful Find request, a window should pop up containing the student's ID, name, major and
current GPA. When the user selects the Update request, the following JOptionPane windows should be
displayed to gather information about a course that has just been completed:

2

This program must consist of two classes.

1. The first class should define the GUI and handle the database interactions.

2. The second class named Student, should define the student record. It must have instance
variables for the student name, major and two variables that are used to compute the GPA. A
variable that contains the total number of credits completed and a second variable that contains
the total quality points, which are the numeric value of the grade received in a course times the
number of credit hours. It should not contain the student ID. The class should have the following
three methods:

a. A constructor that is used when new student records are created. It should accept the name
and major as parameters and initialize the fields that are used to compute the GPA to zero.

b. The second method courseCompleted should accept the course grade and credit hours and
update the variables used to compute the GPA. It will be called when an Update request is
made.

c. The third method should override toString and return a labeled string containing the
student name, major and GPA.

Finally when a student has not yet completed any course, the GPA should be displayed as 4.0.

The google recommended Java style guide, provided as link in the week 2 content, should be used to
format and document your code. Specifically, the following style guide attributes should be addressed:

 Header comments include filename, author, date and brief purpose of the program.

 In-line comments used to describe major functionality of the code.

 Meaningful variable names and prompts applied.

 Class names are written in UpperCamelCase.

 Variable names are written in lowerCamelCase.

 Constant names are in written in All Capitals.

 Braces use K&R style.

In addition the following design constraints should be followed:

 Declare all instance variables private

 Avoid the duplication of code

 Also any exceptions thrown by nonnumeric inputs should be properly handled

Test cases should be supplied in the form of table with columns indicating the input values, expected
output, actual output and if the test case passed or failed. This table should contain 4 columns with
appropriate labels and a row for each test case. Note that the actual output should be the actual results
you receive when running your program and applying the input for the test record. Be sure to select
enough different scenarios to completely test the program.

Note: All code should compile and run without issue.

3

Submission requirements

Deliverables include all Java files (.java) and a single word (or PDF) document. The Java files should be

named appropriately for your applications. The word (or PDF) document should include screen captures

showing the successful compiling and running of each of the test cases. Each screen capture should be

properly labeled clearly indicated what the screen capture represents. The test cases table should be

included in your word or PDF document and properly labeled as well.

Submit your files to the Project 4 assignment area no later than the due date listed in your LEO

classroom. You should include your name and P4 in your word (or PDF) file submitted (e.g.

firstnamelastnameP4.docx or firstnamelastnameP4.pdf).

Grading Rubric:

The following grading rubric will be used to determine your grade:

Attribute Meets Does not meet

GUI Class 40 points

Defines the GUI.

Provides a combo box to allow
the user to select one of the
four database actions including
insert, update, delete and find.

The database is implemented as
a HashMap, with the ID field as
the key and a student record
consisting of a name and major
as the value.

The operation is performed
when the user clicks the Process
Request button.

If the user attempts to insert a
key that is already in the
database an error message is
displayed using a JOptionPane
message dialog box.

If the user attempts to delete,
find or update a record that is

0 points

Does not defines the GUI.

Does not provide a combo box
to allow the user to select one
of the four database actions
including insert, update, delete
and find.

The database is not
implemented as a HashMap,
with the ID field as the key and
a student record consisting of a
name and major as the value.

The operation is not performed
when the user clicks the Process
Request button.

If the user attempts to insert a
key that is already in the
database an error message is
not displayed using a
JOptionPane message dialog
box.

If the user attempts to delete,
find or update a record that is

4

not in the database, a message
is displayed.

After each successful operation
is completed a JOptionPane
window is displayed confirming
the success.

In the case of a successful Find
request, a window pops-up
containing the student's ID,
name, major and current GPA.

When the user selects the
Update request, a JOptionPane
windows is displayed to gather
information about a course that
has just been completed
including the grade and number
of credits.

not in the database, a message
is not displayed.

After each successful operation
is completed a JOptionPane
window is not displayed
confirming the success.

In the case of a successful Find
request, a window does not
pop-up containing the student's
ID, name, major and current
GPA.

When the user selects the
Update request, a JOptionPane
window is not be displayed to
gather information about a
course that has just been
completed including the grade
and number of credits.

Code does not Compile.

Student class 40 points

Defines the student record.

Contains instance variables for
the student name, major and
two variables that are used to
compute the GPA.

Contains a variable
representing the total number
of credits completed

Contains a variable representing
the total quality points, which
are the numeric value of the
grade received in a course times
the number of credit hours.

The class should not should
contain the student ID.

Contains a constructor that is
used when new student records

0 points

Does not define the student
record.

Does not contains instance
variables for the student name,
major and two variables that
are used to compute the GPA.

Does not contain a variable
representing the total number
of credits completed

Does not contain a variable
representing the total quality
points, which are the numeric
value of the grade received in a
course times the number of
credit hours.

The class contains the student
ID.

5

are created. It should accept the
name and major as parameters
and initialize the fields that are
used to compute the GPA to
zero.

Contains a method
courseCompleted that accepts
the course grade and credit
hours and update the variables
used to compute the GPA.

courseComplete is called when
an Update request is made.

Contains an overridden toString
method that returns a labeled
string containing the student
name, major and GPA.

Calculates and displays a GPA of
4.0 for students who have not
yet completed any course.

Does not contains a constructor
that is used when new student
records are created. It should
accept the name and major as
parameters and initialize the
fields that are used to compute
the GPA to zero.

Does not contains a method
courseCompleted that accepts
the course grade and credit
hours and update the variables
used to compute the GPA.

courseComplete is not called
when an Update request is
made.

Does not contains an
overridden toString method
that returns a labeled string
containing the student name,
major and GPA.

Does not calculate or display a
GPA of 4.0 for students who
have not yet completed any
course.

Code does not Compile.

Test Cases 10 points

Test cases are supplied in the
form of table with columns
indicating the input values,
expected output, actual output
and if the test case passed or
failed.

Enough scenarios selected to
completely test the program.

Test cases were included in the
supporting word or PDF
documentation.

0 points

No test cases were provided.

Documentation and Style guide 10 points 0 points

6

Screen captures were provided
and labeled for compiling your
code, and running each of your
test cases.

Header comments include
filename, author, date and brief
purpose of the program.

In-line comments used to
describe major functionality of
the code.

Meaningful variable names and
prompts applied.

Class names are written in
UpperCamelCase.

Variable names are written in
lowerCamelCase.

Constant names are in written
in All Capitals.

Braces use K&R style.

Declare all instance variables
private.

Avoids the duplication of code.

Any exceptions thrown by
nonnumeric inputs are properly
handled.

No documentation included.

Java style guide was not used to
prepare the Java code.

All instance variables not
declared private.

Duplication of code was not
avoided.

any exceptions thrown by
nonnumeric inputs are not
properly handled

