[bookmark: _GoBack]CMSC204
Assignment #6
Spring 2015

You will be implementing an application to determine which of a set of integers are prime numbers using the “trial division” method. This can be a time-consuming effort for large numbers, so you will connect to a server (possibly a high-end server, but in our case just another process on your own machine) and the server will use multiple threads, one for each check of a candidate prime number.

http://en.wikipedia.org/wiki/Trial_division describes the trial division algorithm as follows: “Given an integer n, the integer to be factored, trial division consists of systematically testing whether n is divisible by any smaller number. Clearly, it is only worthwhile to test candidate factors less than n, and in order from two upwards because an arbitrary n is more likely to be divisible by two than by three, and so on… Furthermore, the trial factors need go no further than [image: \scriptstyle\sqrt{n}] because, if n is divisible by some number p, then n = p × q and if q were smaller than p, n would have earlier been detected as being divisible by q or a prime factor of q.” There are many steps to add efficiency to the algorithm, but the basic trial division algorithm will be sufficient for this assignment. In other words, to check if a number is a prime, loop from 2 to the square root of the number, and for each loop divide the number by the index. If it divides evenly (i.e., if n % i == 0), then n is not a prime, for any i from 2 to the square root of n.

Your program should pass the JUnit tests provided in PrimeFinderManagerTest.java and ClientTest.java. You should have a manager class that implements PrimeManagerInterface.java, a server class that implements ServerInterface.java, a client class that implements ClientInterface.java, and a PrimeThread class that implements PrimeThreadInterface.java.

Document your design with javadoc and UML diagrams of the public classes.

The Data Element
	A set of integers will be entered by the user. Each of these integers will be checked for primality.
The Data Structure
Hold the candidate numbers and the resulting primes in two ArrayList<Integer> data structures.
The Data Manager - PrimeFinderManager
A class that parses the input string, expecting integers separated by single spaces, parses each separated string into an integer, adds them to an ArrayList of integers, and calls the Client constructor with information (hostname and port) to allow the client to connect to the server. Note that the PrimeFinderManagerInterface specifies a constant CLIENT_INPUT_DONE = -999. The user inputs -999 at the end of his list of integers to check, to specify that the string is done. Then the data manager should call the client’s checkCandidates method to parse the candidate primes, and close the client when it is done. The data manager is also responsible to write out the prime numbers to a file specified by the user. The data manager should specify that the client and server connect with each other with hostname “localhost” and an unused port number you specify between 1 and 65,536. Note that the lower port numbers are used by the system for various applications, so your port numbers should start above 500 approximately. The “localhost” hostname points to the same computer (called a loopback). It can also be specified as “127.0.0.1”.
The Client
A class that is responsible for connecting with the server via a socket, sending each candidate number to the server, receiving from the server a response for each candidate as to whether that candidate is a prime, and adding the prime numbers to prime-number list of the PrimeFinderManager instance. The response from the server will be a string in the format of the candidate and 0 or 1, separated by a space, where a 0 means the server has determined that the candidate is not a prime, and 1 means it is a prime. (For example, “43 1” means 43 is a prime, while “6 0” means 6 is not a prime.)
The Server
A class that is responsible for accepting a client connection via a socket, receiving each candidate number, creating a thread and testing each candidate with the method isPrime(int num) of an instance of the class PrimeThread. The server then sends a response to the client with the outcome (see format under Client).
The GUI
· Provides a button to start the server. Insure that the user starts the server first by graying out all the other buttons (except “Exit”).
· Provides a means by which the user can enter a set of integers
· Provides a button that checks the integers for primality
· Provides a button that displays those numbers found to be primes.
· Provides a button that writes the prime numbers to a file.
· Provides a button to close the server and client and exit.
Exceptions – existing exceptions only
· NumberFormatException –if the user enters input that cannot be parsed into an integer.
· SocketException – if attempting to close a socket that has an ongoing I/O operation.
· Other standard exceptions

Output Examples
· GUI at start-up:
[image:]

· GUI with candidate numbers entered:
[image:]
· GUI after checking for primes
 [image:]

· Response if user enters non-integers, or separates numbers by more than one space
[image:]

Program Grade Sheet
Assignment #6
CMSC 204

DOCUMENTATION
 Javadoc for the user generated classes:			 		 8 pts _____
	
 Test Cases									 8 pts _____
	JUnit Test Class
 		Implement STUDENT tests
								
 UML Diagram								 4 pts _____

PROGRAMMING
 Internal class documentation (within source code)			 6 pts _____
	Class description using Javadoc						
	Author’s Name, Class, Class Time, @author					
Methods commented using Javadoc, @param, @return					
 Compiles and Runs without errors						10 pts _____
 Program user interface
	Clear to user how data is to be entered				 4 pts _____	
	Output is easy to understand						 2 pts _____
 Accuracy									
 	Received correct output	
a. Public tests (given to you and those you wrote)		10 pts _____
b. Private tests
 Efficiency									 6 pts _____
				
 Program Details
	Client and Server communicate via sockets				10 pts _____					
Server runs each prime check in a separate thread			10 pts _____	 \
	
Data Manager	- PrimeFinderManager				 6 pts _____
Implements PrimeFinderManagerInterface	
	
	Server implements ServerInterface, Client implements 6 pts _____
 and PrimeThread implements PrimeThreadInterface
			
GUI classes:								10 pts _____
1. Starts Server, displays and writes primes to a file
2. Provides a way to enter integers to check for primality
3. Exceptions are displayed to user when appropriate
4. Uses the methods of the PrimeFinderManager

Total										100 pts _____
image4.png
Prime Finder

Enter Numbers to Check for Primality:

23456780-000

primes: 2

Check for Primality

Start Server

Displ Write Primes

image5.jpeg
Prime Finder - O R

Enter Numbers to Check for Primality:
45123

Check for Primality

oK

StartServer || DisplayPrimes || write Primes || Exit

image1.png

image2.jpeg
2}

Enter Numbers to Check for Primality:

Check for Primality

Start Server

Display Primes || _Wiite Primes

Exit

image3.png
Prime Finder

l=e/@ =

Enter Numbers to Check for Primality:

23456780-000

Check for Primality

Start Server

Display Primes

Write Primes

