
1

CPS 470/570: Computer Networks
Assignment 2, due March 15, 2017 (100 pts)

No late submission will be accepted

Receive 5 bonus points if turn in the complete work without errors at least one day before deadline

Receive an F for this course if any academic dishonesty occurs

1. Purpose

Understand how to design non-ASCII application-layer protocols and learn how to provide

reliable transfer over UDP.

2. Description

2.1. Overview

Your goal is to implement a DNS resolver that runs over UDP. The user inputs strings that can

be either host names or IP addresses, which need to be resolved through DNS. Your program

must directly use UDP and parse DNS responses without using any shortcuts from Platform

SDK. The answers returned by the local DNS server must be displayed to the user including any

additional records and multiple answers. A complete specification of packet headers and the

various fields is contained in RFCs 1034-1035.

The program can be run in two modes – interactive (i.e., using command-line input) and batch

(i.e., using input file dns-in.txt). In the former case, the code will return a detailed answer to

the query provided by the user (see examples below). In the latter case, the code will read the

input file (one question per line) and perform lookups using N threads, where N is specified in

the command line. To distinguish between the modes, check if the first argument to the program

is an integer. If so, assume this integer is the number of threads for batch lookups. Otherwise,

assume the interactive mode.

Requirements for interactive lookups:

1. Your code must be able to decide whether input is an IP or a hostname based on the

syntax of the string. Invalid IPs should be rejected immediately without contacting DNS

(see below for more).

2. You must be able to send A and PTR requests based on user input and parse CNAME, A,

and PTR responses. You must parse responses in both the answer section and the

additional-records section; however, you may skip the authoritative section even if the

number of answers there is non-zero.

3. You must be able to handle compressed resource records (RRs) as most DNS servers will

return compressed data. The compression scheme in DNS is very simple and is

documented fully in RFC 1035.

4. You must differentiate between successful lookups and failures, as well as detect errors

and interpret them for the user. For example, return code 3 signifies a non-existent DNS

name (print "No DNS entry") and code 2 means that the authoritative server cannot be

found/contacted by your local DNS server (print "Authoritative DNS server not found").

2

If your program times out waiting for the local DNS server, display "Local DNS server

timeout." For all other errors, print the numerical error and exit.

5. The code must be able to dynamically find the local DNS server for your computer (no

hardcoding of its IP).

6. The program must not crash or exceed array boundaries under any circumstances (sanity

checks for all pointers and fixed headers).

Requirements for batch lookups (either single-threading or multi-threading):

1. The main thread must read all strings from dns-in.txt (a list of IP addresses) into a

shared queue inputQ, then start N threads, which will draw items from the queue,

perform DNS lookups, write all answers into another shared queue outputQ, and

continue looping until inputQ becomes empty. When all done, the main thread will write

the items from outputQ into file dns-out.txt. The order of answers on output does not

have to match that on input. Note that errors must be recorded as well. Note: attaching

timestamps (request/response time) to each answer will allow you to reconstruct how

long each query took. This info can also be used to compute the number of queries

per second completed by the program.

Delivery schedule:

1. The implementation of the interactive lookup mode is due at 3-8-2017.

2. The complete project and report are due at 3-15-2017.

Sample interaction:
C:\> resolver.exe www.cnn.com

Answer(s):
www.cnn.com is aliased to cnn.com
cnn.com is 64.236.24.28
cnn.com is 64.236.29.120
cnn.com is 64.236.16.20
cnn.com is 64.236.16.52
cnn.com is 64.236.16.84
cnn.com is 64.236.16.116
cnn.com is 64.236.24.12
cnn.com is 64.236.24.20

C:\> resolver.exe google.com

Answer(s):
google.com is 64.233.167.99
google.com is 72.14.207.99
google.com is 64.233.187.99

Additional answer(s):
ns1.google.com is 216.239.32.10
ns2.google.com is 216.239.34.10
ns3.google.com is 216.239.36.10
ns4.google.com is 216.239.38.10

C:\> resolver.exe www.google.commmm

No DNS entry

3

C:\> resolver.exe some.slow.domain

Authoritative DNS server not found

C:\> resolver.exe some.weird.domain

Local DNS server timeout
C:\> resolver.exe 131.238.74.71

Answer(s):
131.238.74.71 is csmvip1.udayton.edu
131.238.74.71 is www.udayton.edu

C:\> resolver.exe 216.239.37.99

No DNS entry

C:\> resolver.exe 216.239.37.399

Invalid IP address

C:\> resolver.exe 2

Starting batch mode with 2 threads...
Reading input file... found 4300500 entries
...
Completed 4300500 queries

Successful: 62%
No DNS record: 25%
No auth DNS server: 10%
Local DNS timeout: 3%
Average delay: 250 ms
Average retx attempts: 1.23
<some additional statistics>

Writing output file... finished with 9887321 entries

Requirements for the report:

1. Document your code.

2. Show sample output from your program and its handling of all types of cases outlined

above (you do not need to use the same exact input, but rather examples that are similar

in spirit). To find an example for each case, perform reverse DNS lookups on the entire

list of IP addresses in the input file. Show several examples of hosts that produce

"authoritative DNS not found" and "local DNS timeout." Find examples of IPs that are

aliased to other IPs.

3. Examine the issue of packet loss by analyzing the number of times you had to transmit

requests to the local DNS server before the attempt was successful (i.e., you received

some response). Note that this value is the attempt number to which the server has

responded, not the total number of attempts made. Plot a distribution similar to the one

shown in Figure 1(a), except your maximum number of attempts will be 3 instead of 6.

The numbers in the figure will add up to 100%.

4

4. Show the histogram of lookup delays for all successfully resolved IPs. Histograms are

plotted by partitioning a dataset into fixed bins and counting the fraction of data in each

bin. See Figure 1(b) for an example that uses 200-ms bins. The numbers in the figure will

also add up to 100%.

5. Document the percentage of successful lookups for IP addresses in dns-in.txt and

compare this number to that obtained using gethostbyaddr() in homework #1.

6. Using multiple threads starting from 2 and going up to 100 in some increments,

document the performance of your resolver (i.e., loopups per sec = 1 / average-lookup-

delay) in comparison to gethostbyaddr(). Specify the average CPU utilization for each

case. Draw conclusions on the efficiency of your implementation. See Table 1 for an idea

(numbers in the table do not necessarily have to correspond to yours).

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6

transmission attempts

p
e
rc

e
n

t
IP

s

0

0.01

0.02

0.03

0.04

0.05

0.06

100 2100 4100 6100 8100 10100

lookup delay (ms)

p
e
rc

e
n

t
IP

s

(a) (b)

Figure 1. Sample graphs for this homework.

getHostByAddr()

Threads Attempted Found

%

Success

Time

(sec) Lookups/sec CPU

250 142242 130863 92.00% 319.9 444.65 80%

...

3000 142242 130447 91.71% 209.7 678.31 100%

Your code

Threads Attempted Found % Success

Time

(sec) Lookups/sec CPU

250 142242 131930 92.75% 108.1 1315.84 20%

...

3000 142242 131935 92.75% 103.8 1370.35 30%

Table 1. Sample comparison with gethostbyaddr().

2.2. Details

Your program will parse the input and first attempt to guess whether it refers to a host name or

an IP address. If the user string contains only digits 0-9 and dots, assume that it is an IP address;

otherwise, assume it is a host name. To check the validity of an IP address, pass it through

inet_addr(), which returns INADDR_NONE if the string is not legitimate. For host names, do

not perform any checks and directly supply the string to the DNS resolver. The organization of

your program may look similar to the one shown in Figure 2.

5

Input

line

timeout

count < 3

timeout yes, retransmit

no

User output

A, CNAME, or PTR

UDP sender

and receiver

Query type

Query

constructor Query type A

Query type PTR
IP

host

Response

parser

response

Figure 2. Flow-chart of the program.

UDP sockets are opened with socket (AF_INET, SOCK_DGRAM, 0) and your destination port

number is 53, which should be passed to function sendto() when you are ready to transmit a

request. After a socket is opened, bind it to port 0, which allows the OS to select the next

available port for you. There is no connect phase and sockets can be used immediately after

bind(). The basic DNS header is provided to you in the book and class slides. It is 12 bytes long

and consists of six fields. Fill in the ID field, flags, and the number of queries. Set the other three

fields to zero. Following these 12 bytes is the question field described below.

Each query includes a variable-size question and a trailing fixed-size header as shown in Figure

3. The question string is separated into substrings based on the locations of the dot. For example,

“www.google.com” becomes str1 = “www”, str2 = “google”, str3 = “com”. The lengths of the

corresponding strings are 3, 6, and 3 bytes. The last substring is null-terminated as shown in the

figure.

str1 str1 size

1 byte

Query type Query class

2 bytes 2 bytes

strn strn size

1 byte

0 …

question

Figure 3. Question header.

There is only one useful query class:

/* query classes */
#define DNS_INET 1

Query types are integer numbers specified in RFC 1035. Several useful queries:

6

/* DNS query types */
#define DNS_A 1 /* name -> IP */
#define DNS_NS 2 /* name server */
#define DNS_CNAME 5 /* canonical name */
#define DNS_PTR 12 /* IP->name */
#define DNS_HINFO 13 /* host info */
#define DNS_MX 15 /* mail exchange */
#define DNS_AXFR 252 /* request for zone transfer */
#define DNS_ANY 255 /* all records */

To receive UDP responses from the server, use function recvfrom(). Each call to recvfrom()

results in retrieval of one UDP packet that corresponds to the answer (i.e., DNS queries and

replies cannot be larger than one packet). It is therefore not necessary to form a receive loop

around recvfrom() as done in homework #1. Also note that the returned data is binary and

cannot be uploaded into STL strings, which means that you must process raw char buffers as part

of this homework.

Using a combination of experiments with Wireshark and RFCs 1034, 1035, your responsibility is

to understand how the response is structured and write a parser for it. You may also find the

following site useful: http://www.networksorcery.com/enp/protocol/dns.htm. You can set up

Wireshark filters to only display information related to DNS (i.e., port 53) to avoid clutter on the

screen. See video on Wireshark's website (https://www.wireshark.org) to set up filters at

Note that you should support both compressed and uncompressed answers. To recognize

compression, check the string-size byte for being larger than 192 (i.e., the two most-significant

bits are 11) and see examples in the RFC.

2.3. Packet Loss

Since not all UDP packets are reliably delivered to your local DNS server, implement a simple

retransmission based on a timer. After each request is sent, enter into a wait state until you either

receive a response from your local DNS server or the timer expires:

while (count++ < 3) {
 // send request to the server
 ...
 // get ready to receive

fd_set fd;
FD_ZERO (&fd); // clear the set
FD_SET (dns_sock, &fd); // add your socket to the set
int available = select (0, &fd, NULL, NULL, &tp);
if (available > 0) {
 recvfrom (...);
 // parse the response
 // break from the loop
}
// some error checking here

}

7

In this code, tp is a timeval structure that specifies the timeout before the function returns back

(it is recommended that you set the timeout to 30 seconds). If available is zero, the function

returned after a timeout and a new request should be sent to the DNS server. Otherwise, issue a

recvfrom() and parse the result (do not forget to check for errors returned by select() and

reinsert dns_sock to fd between calling select). If you receive three timeouts in a row, abort

the lookup and report the corresponding error to the user. Do not hang forever since some DNS

requests never get a response.

Also note that in order to properly correlate responses to queries, you must use the ID field of the

DNS header. Ambiguity arises when you transmit multiple copies of the same query, but then

have no way of knowing which of the original questions generated the response (you need this

knowledge in order to plot Figure 1). It is recommended that each thread have its own UDP

socket and maintain its own counter for the ID field that is incremented with each new query

packet transmitted. This also allows the program to ignore outdated replies in response to earlier

questions.

2.4. Header Caveats

All numbers are coded in the network byte order and must be converted to/from your local host

notation. This applies to the flags and other fields/codes below:

/* flags */
#define DNS_QUERY (0 << 15) /* 0 = query; 1 = response */
#define DNS_RESPONSE (1 << 15)

#define DNS_STDQUERY (0) /* opcode - 4 bits */
#define DNS_INVQUERY (1 << 11)
#define DNS_SRVSTATUS (1 << 12)

#define DNS_AA (1 << 10) /* authoritative answer */
#define DNS_TC (1 << 9) /* truncated */
#define DNS_RD (1 << 8) /* recursion desired */
#define DNS_RA (1 << 7) /* recursion available */

#define DNS_OK 0 /* rcode = reply codes */
#define DNS_FORMAT 1 /* format error (unable to interpret) */
#define DNS_SERVERFAIL 2 /* server failure */
#define DNS_ERROR 3 /* no DNS entry */
#define DNS_NOTIMPL 4 /* not implemented */
#define DNS_REFUSED 5 /* server refused the query */

For example, to set flags for query and recursion desired, use htons(DNS_QUERY | DNS_RD).

Note that all queries must be standard (i.e., DNS_STDQUERY) and that inverse queries (i.e.,

DNS_INVQUERY) are not the same as reverse queries (i.e., of type PTR). Most DNS servers do not

support inverse queries. To obtain a reverse-DNS mapping, issue a standard PTR query on the

string <backwards IP>.in-addr.arpa as recommended in RFC 1035 and discussed in class.

Avoid manipulating individual bytes and instead use classes to write into binary arrays:

class queryHeader {

8

 u_short type;
 u_short class;
};

class fixedDNSheader {

u_short ID;
u_short flags;
u_short questions;
...

};

fixedDNSheader dns_header;
queryHeader query_header;

// fixed field initialization
dns_header.ID =
dns_header.flags =
...

Question q; // your class

string host = “www.google.com”;
q.CreateQuestion(host);
// q.rawbuffer now holds a raw request
int size = q.size() + sizeof (fixedDNSheader) +
 sizeof(queryHeader);
u_char *pkt = new u_char [size];
q.MakePacket (pkt, &dns_header, &query_header);
sendto (sock, pkt, ...);
delete pkt; q.freeRawbuffer();

2.5. DNS Lookup Issues

You may use an open DNS server (e.g., google DNS server) or local DNS server. Make sure you

do rate-limiting on traffic, i.e., do not overwhelm DNS servers.

2.6. Reading Raw Buffers

You can cast pointers into receive buffers instead of parsing results byte-by-byte:

#pragma pack(1) // because the struct is 10 bytes
class FixedRR {

u_short type;
u_short class;
int TTL;
...

};
char buf[512]; // max packet size
recvfrom (sock, buf, ...);
FixedDNSheader *fdh = (DNSheader*)buf;
// read fdh->ID and other fields
// skip over variable fields to the answer(s) section
fixedRR *frr = (fixedRR*)(buf + offset);
// read frr->type and other fields

