

ITP	109:	Introduction	to	Java	Programming	

Assignment	07	Using	arrays		

In	this	assignment	you	will	create	a	program	from	scratch;	a	one-dimensional	game	of	Lights	Out.	Briefly,	
the	game	consists	of	a	row	of	lights	that	can	be	either	on	or	off.	By	choosing	a	particular	light,	you	switch	
its	state	and	the	state	of	its	neighbors.	That	is,	you	turn	the	chosen	light	from	off	to	on	or	from	on	to	off,	
and	you	turn	each	neighbor	from	off	to	on	or	from	on	to	off,	depending	on	their	initial	states.	The	game	
is	won	when	all	of	the	lights	are	turned	off.		

For	example,	if	there	were	6	lights	in	the	game	in	the	following	state	(dark	squares	indicate	"off",	light	
squares	indicate	"on"):		

and	the	user	selected	light	number	2,	then	the	resulting	state	would	be	:	

If	the	user	then	selected	light	number	0,	the	resulting	state	would	be	:	

	Doing	so	you	will	practice…	

• Creating	methods	

• Using	arrays	

• Testing	your	code	

Procedure	

Step	1:	Open	BlueJ	and	create	a	new	project	called	Assignment07-userName,	where	username	is	your	
USC	username	(your	email	address	without	the	@usc.edu).	You	will	have	one	file	called	LightsOut	that	
contains	all	the	logic	for	the	game.	

Game	Overview:	Your	program	should	first	prompt	the	user	for	a	number	of	lights.	This	must	be	
between	3	and	15	(inclusive).	If	it	is	not	in	that	range,	your	program	should	enter	a	small	loop	in	which	it	
continues	to	prompt	the	user	for	an	integer	in	the	valid	range	until	one	is	typed.	You	may	assume	the	
user	will	always	input	an	integer.		

Your	program	should	create	an	array	of	the	specified	length	and	go	through	each	value	in	the	array	and	
randomly	set	it	to	"on"	or	"off".	This	randomization	is	for	each	value	separately	--	we	want	a	random	
pattern	of	lights	to	begin	with.	

	

You should then print out the pattern of lights so that each "on" light is a 4x4 block of *'s and
each "off" light is a 4x4 block of spaces. Each light should be separated by vertical bars (|).
After printing the lights, you should include numbers beneath each light, starting from 0.

 A full-sized, fifteen-light initial configuration might look like this:

****	****				****		****	****	****					****
****	****				****		****	****	****					****
****	****				****		****	****	****					****
****	****				****		****	****	****					****
 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Then, you should ask the user what light they would like to select (it must be an integer). You
should check to be sure that the light selected is actually valid for the current game -- if not, you
should enter a small loop and continue prompting the user until a correct input is typed in. See
the run below as an example. (Also note: For some numbers of lights and some initial states, the
Lights Out puzzle isn't even solvable. So there needs to be an option to let the user quit if they
can’t get to a solution!)

Once a valid light number is input, your program should make the appropriate changes to the
light array, and then continue by printing out the new array and prompting the user again. When
the user wins the game by turning off all of the lights, the program should stop, print a
congratulatory message, and quit. There is no need to prompt the user to play again; in this case,
we'll let the user rerun the program if they would like to.

Here is a sample run of my program as a guide to an appropriate interface. The user's input is
underlined:

Welcome to Lights Out!
How many lights would you like to have (3-15)? 8

****	****		****	****			
****	****		****	****			
****	****		****	****			
****	****		****	****			
 0 1 2 3 4 5 6 7

Which light do you select (or -1 to quit)? 1

		****	****	****			
		****	****	****			
		****	****	****			
		****	****	****			
 0 1 2 3 4 5 6 7

Which light do you select (or -1 to quit)? 3

 0 1 2 3 4 5 6 7

You win! Well done.

LightsOut Specifics
• Variables:	

o The	boolean	array	of	lights	
o A	boolean	that	represents	if	the	game	is	won	or	not	
o Optional:	

§ 2	constants	(boolean	ON	=	true	and	boolean	OFF	=	false).	I	find	it	helpful	to	think	
of	ON	and	OFF	instead	of	true/false,	but	it	is	up	to	you.	

§ Scanner	for	user	input	(optional,	can	be	a	local	variable	or	instance	variable)	
• Methods:	each	individual	task	of	the	game	belongs	in	a	method.	You	must	have	at	least	the	

following	methods	in	your	program	(in	no	particular	order):	
o public void start()	–	this	method	controls	the	whole	flow	of	the	game.	It	is	the	

only	public	method.	
o private int getNumberOfLights()	–	this	method	is	responsible	for	prompting	the	

user	for	the	number	of	lights	he/she	wants	in	the	games.	It	will	only	return	a	valid	
number,	[3-15]	

o private void initializeLights()	–	this	method	will	initialize	each	spot	in	the	
array	to	true	or	false.	Note	that	the	Random	class	has	a	nextBoolean()	method	that	can	
be	used.	

o private void checkWin()	–	this	method	updates	the	boolean	instance	variable	if	
needed	and	displays	a	message	to	the	user	

o private boolean isValid(int light)	–	this	method	returns	true	if	a	given	light	is	
valid	for	the	game	(that	is,	it’s	between	valid	array	indices:	0	to	number	of	lights)	

o private int getLightNum()	–	this	method	handles	the	user	input	for	which	light	
they	want	to	choose.	It	only	returns	a	valid	light	number	or	-1.	

o private void changeLights(int lightNum)	–	this	method	controls	the	flow	of	
changing	lights,	based	on	the	lightNum.	It	switches	the	light	at	spot	lightNum,	and	then	
makes	sure	neighboring	lights	are	valid	before	switching	their	colors.		

§ Note:	At	the	end	of	this	method	or	in	the	start	method	after	the	call	to	
changeLights,	you	should	check	to	see	if	the	game	is	won	after	these	lights	are	
changed.	

o private void printLights()	–	this	method	“pretty”	prints	the	lights	according	to	
the	printing	specifications	above	

• Make	sure	to	comment	your	code	and	use	good	style	like	proper	indentation.	

Deliverables	

• A	compressed	Assignment07-username	folder	containing	two	files	(Location.java	and	
Quizlet.java).	It	must	be	submitted	through	Blackboard.	
Here	are	the	instructions	for	submission	
a) Navigate	to	your	project	folder.	
b) Create	a	compressed	folder	with	all	your	code.	
c) Rename	the	zip	file	as	follows:	assignment07_lastname_firstname	
d) Upload	zip	file	to	Blackboard	site	for	our	course.	

Please	note,	if	you	do	not	follow	the	submission	instructions,	your	submission	will	not	be	graded	and/or	
will	be	counted	as	late.	Please	make	sure	you	have	named	your	files	appropriately.	

	

Sample	output	

Welcome to Lights Out!
How many lights would you like to have (3-15)? 10

	****			****					
	****			****					
	****			****					
	****			****					
 0 1 2 3 4 5 6 7 8 9

Which light do you select (or -1 to quit)? 2

		****	****	****					
		****	****	****					
		****	****	****					
		****	****	****					
 0 1 2 3 4 5 6 7 8 9

Which light do you select (or -1 to quit)? 1

****	****		****	****					
****	****		****	****					
****	****		****	****					
****	****		****	****					
 0 1 2 3 4 5 6 7 8 9

Which light do you select (or -1 to quit)? 1

		****	****	****					
		****	****	****					
		****	****	****					
		****	****	****					
 0 1 2 3 4 5 6 7 8 9

Which light do you select (or -1 to quit)? 3

 0 1 2 3 4 5 6 7 8 9

You win! Well done.
 	

	

Grading	

Item	 Points	
getNumberOfLights	returns	3-15	 4	
initializeLights	randomly	sets	array’s	values		 4	
Start	method	sets	up	game	properly	 3	
Start	method	loops	for	valid	game	play	 5	
checkWin	properly	maintain	game	won	status	 5	
isValid	 3	
getLightNum	 3	

Changelights:	change	light	and	it’s	neighbors	properly	 5	
printLights	 5	
Comments,	style,	and	proper	submission	 5	
Total	 42	
	

Remember	that	looking	at,	sharing,	or	copying	anyone	else's	code,	is	considered	cheating.	If	you	need	
help	with	something,	ask	in	class,	ask	one	of	the	instructors	during	office	hours,	ask	a	TA	in	office	hours,	
ask	on	Piazza,	or	ask	a	peer	to	verbally	explain	a	concept	to	you.	

	

