
Laureate Online Education
Information Security Engineering

© All rights reserved 2000-2009. The Information Security Engineering module, in all its parts: syllabus, guidelines,
lectures, discussion questions, technical notes, images, projects and any additional material is copyrighted by Laureate
Online Education.

Information Security Engineering Seminar for Week 6

Network and Internetworking security, digital content protection

Internet security is a fashionable and fast moving field with attacks on the Internet often
making the headlines of widely distributed newspapers such as The New York Times.
Unfortunately, these reports are often misleading. This week we will be studying security
issues related to the Internet - concentrating on protection mechanisms. In particular, we
will cover the following topics: the most common attacks, distributed denial of service
attacks, intrusion detection, firewalls, IETF security protocols, and XML security. For
several sections of this lecture, we will assume that you are familiar with network
protocols, e.g. you have taken the CC module, or have some prior knowledge of computer
communication. Please also re-read Seminar 1 materials related to the OSI/Internet
Security Architecture, security services and mechanisms.

The most common attacks
Most reported attacks on the Internet fall into the following three categories: software
implementation faults such as buffer overflow, protocols failure, and password guess. The
textbook lists the Internet’s Top 10 vulnerabilities. Up to now the most important attacks
on the Internet have been the Internet Morris worm, SYN flooding, and Distributed Denial
of Service attacks (for definitions see Section 18.2.2 in the textbook). In the following, we
will briefly describe Distributed Denial of Service Attacks since it is easy to find published
information on SYN flooding and the Morris worm in textbooks. For more information on
other forms of attack, take a look at the textbook and the CERT homepage.

Computer Viruses
The term computer virus is often used to indicate any software that can cause harm to
systems or networks. Often, though, people do not include certain malicious software,
such as Trojan horses and network worms, in the computer virus family (see Section 18.4
of the textbook). In our discussion, a computer virus refers to any code that causes
computer or network systems to behave in a different manner to that which is intended. A
Trojan horse program is a useful or apparently useful program or a shell script containing
hidden code that performs some unwanted function. A simple example of a Trojan horse
program might be a telnet program. When a user invokes the program, it appears to be
performing telneting and nothing more, however it may also be quietly changing file
access permissions. Some Trojan horse programs are difficult to detect - for example a
compiler on a multi-user system that has been modified to insert additional code into
certain programs when they are compiled (this idea was first observed by Thompson). The

1/15

hidden code of a Trojan horse program is placed there deliberately by the program's
author. Generally, the hidden code in a computer virus program is added by another
program - itself a computer virus. Thus a typical characteristic of a computer virus is to
copy its hidden code to other programs, thereby infecting them.

Generally, a computer virus exhibits three characteristics: a replication mechanism, an
activation mechanism, and an objective.

The replication mechanism performs the following functions. It searches for other
programs to infect. Then, when it finds a program, possibly it determines whether the
program has been previously infected, inserts hidden instructions somewhere in the
program, modifies the execution sequence of the program's instructions such that the
hidden code will be executed whenever the program is invoked, and sets up some flags
indicating that the program has been infected. The flag may be necessary because
without it, programs could be repeatedly infected and grow noticeably large.

The activation mechanism checks for the occurrence of some event. When the event
occurs, the computer virus executes its objective, which is generally some unwanted,
harmful action.

Anti-virus tools perform three basic functions: detecting, identifying, or removing viruses.
Detection tools perform proactive detection, active detection, or reactive detection. That is,
they detect a virus before it executes, during execution, or after execution. Identification
and removal tools are more straightforward in their application.

For the detection of viruses, there are five classes of techniques: signature (note that the
meaning of signature here is completely different from those signatures used in public key
cryptography - by virus signature, we mean a binary string that is used to identify a
specific virus) scanning and algorithmic detection, general purpose monitors, access
control shells, checksums for change detection, heuristic binary analysis, and emulation
detection. A common class of anti-virus tools employs complementary techniques of
signature scanning and algorithmic detection. This class of tool is known as a scanner.
Scanners are limited intrinsically to the detection of known viruses. In signature scanning
an executable is searched for by a selected binary code sequence, called a virus
signature.

General-purpose monitors protect systems from the replication of viruses by actively
intercepting malicious actions. Access control shells function as part of the operating
system, much like monitoring tools. Rather than monitoring for virus-like behavior, the
shell attempts to enforce an access control policy for the system. Change detection works
on the theory that executables are static objects. Modification of an executable therefore
implies a possible virus infection. However, this theory has a basic flaw: some executables
are self-modifying. Heuristic binary analysis is a method whereby the analyzer traces
through an executable looking for suspicious, virus-like behavior. If a program appears to
perform virus-like actions, a warning is displayed. Indeed, the signature scanner is the
most commonly used technique for detecting viruses. Note that at the beginning of this

2/15

section we mentioned that at the end of the replication mechanism, the virus will generally
put a flag in the infected program (often incorporating it into the virus signature).
Otherwise the program may be repeatedly infected, and the size may increase
geometrically. Hence the virus will be detected easily.

The authors of computer viruses always try to design viruses that are immune from those
anti-virus software programs on the market. A polymorphic virus creates copies during
replication that are functionally equivalent but have distinctly different byte streams. To
achieve this, the virus may randomly insert superfluous instructions, interchange the order
of independent instructions, or choose from a number of different encryption schemes.
This variable quality makes the virus difficult to locate, identify, and remove. This kind of
virus can be thought as a static signature-free virus. However, to my knowledge, all known
polymorphic viruses can be detected using algorithmic detection (or emulation detection)
due to their dynamic signatures.

Distributed Denial of Service Attacks (DDoS)
In February 2000, we saw several very successful denial of service attacks on large e-
commerce Internet sites such as CNN, Yahoo, and eBay. These attacks were launched
from many compromised hosts that acted as daemon or zombie machines. Each zombie
carried out a denial of service attack resulting in a large distributed and amplified attack.

The key tools exploited in these attacks were based on tfn or trinoo which are two pieces
of code widely distributed in the hackers’ world. These tools implement a distributed
network denial of service tool capable of waging ICMP flood, SYN flood, UDP flood, and
Smurf-style attacks, as well as providing an ’on demand’ root shell bound to a TCP port.
Indeed, trinoo (also known as trin00) has been well known since the attack on the
University of Minnesota’s network in August 1999. Generally, a trinoo distributed denial of
service attack begins when the attacker compromises one of many master machines. The
attacker will put vulnerability scanning tools, root kits (to conceal malicious codes and
connections), master and trinoo daemon codes, and a list of vulnerable hosts in the
compromised master machine. The master machine then scans for systems that exhibit
the vulnerabilities that trinoo can exploit. A list of vulnerable systems is then passed to an
exploit script that compromises each of them, sets up and connects a listening shell (with
TCP port 1524), and compiles a list of successful ’owned’ systems. The list of ’owned’
systems is passed to another script that installs the trinoo daemon and a root kit via the
open TCP port 1524. This completes the construction of the ’trinoo’ network (it is strongly
recommended that you take a look at information about this on David Dittrich’s web site -
links are provided at the end of this lecture). The attacker can then connect to master
machines via telnet (at port 27655) and enter a password (’betaalmostdone’ for the
version examined by Dittrich). Master machines then pass command lines to daemons via
UDP port 27444. Daemons respond to masters on UDP port 31335. Master machines
form a list of live daemons by listening for the text “**HELLO**” in the data portion of the
daemons’ UDP packets. The attacker can then send the following commands to master
machines: quit, dos IP (to launch a DDoS attack on the address IP), mdos <IP1:IP2:IP3>
(to launch multiple DDoS attacks), and bcast (to form a list of started daemons). Master
machines can send the following commands to daemons: aaa password IP (DoS attack

3/15

the address IP by sending UDP packets to random UDP ports 0-65534), bbb password N
(period of time in seconds to run DoS attack), rsz N (set size of UDP packets to N bytes),
and dle (to shutdown the daemon).

Using the current TCP/IP protocol suite, the following three methods can be used to
prevent your machine from launching such attacks. However, it is almost impossible to
prevent your network from being DDoS attacked.

1. Secure your server. For example, by installing patches on your operating system if
it has vulnerability holes that could be used by these tools for the initial
compromise, using firewalls, and monitoring for intruders.

2. At your router, install mechanisms for Ingress (RFC2267) or Egress filtering. That
is, ensure that all packages that will go to the Internet have your network address
as the source address (this will prevent attacks which forge source addresses).

3. Packets directed at the broadcast address from outside your net should be blocked
at the border. The command to do this for Cisco routers is ”no ip directed-
broadcast”. This will prevent your network being used for Smurf attacks. Smurf
attacks send packets to a ’Smurf amplifier’ network. This is any network that allows
in such packets. These packets come from outside the amplifier net, but are
directed to its broadcast address. Such packets have a forged source address, to
direct all replies from all hosts on the amplifier network to the victim. Each such
packet gets repeated by every machine in the net, amplifying the effect of the
attack.

Intrusion Detection Systems (IDS)
Intrusion Detection is the art of detecting inappropriate, incorrect, or anomalous activity in
a computer system. Generally there are two kinds of Intrusion Detection System (IDS).
The first is a host-based IDS that operates on a host to detect malicious activities on that
host. The second is a network-based ID system that operates on network data flows.
Network-based and host-based IDS have been designed for different purposes, and
perhaps it is better to use a combination of both systems.

Host-based IDS
Host-based IDS (HIDS) use log files and the system's auditing agents as sources of data
(for example, in UNIX systems, the ’syslog’ file can be used for such a purpose). System
administrators are generally responsible for monitoring HIDS. IDS administrators should
be trained professionals who are familiar with the host machine, network connections,
users and their habits, and all software installed on the machine. In particular, IDS
administrators should know the way that the machine is supposed to be running and the
programs that are legitimate. Host-based IDS involves looking at the communications
traffic in and out of a single computer, checking the integrity of system files, and watching
for suspicious processes. There are two kinds of host-based intrusion detection systems:
personal firewalls and agent-based software. Personal firewalls can be configured to look
at all network packets, connection attempts, or login attempts to the monitored machine.
Host-based agents can monitor accesses and changes to critical system files and
changes in user privilege. Examples of host-based IDS include:

4/15

1. TCPWrappers (http://coast.cs.purdue.edu/pub/tools/unix)
2. GFI LANguard S.E.L.M

(http://www.gfi.com/lanselm/?adv=142&loc=35&adclickid=15279873)
3. ELM 3.0 TNT software

(http://www.tntsoftware.com/Products/ELMLogManager.aspx)
4. IBM ISS, (http://www.iss.net/)
5. Tripwire (www.tripwiresecurity.com).

Since UNIX has plenty of log and audit files, it is relatively easy to create host-based
intrusion detection systems by writing code to automatically analyze log files and alert
system administrators.

Network-based IDS
Network-based IDS monitor the traffic on its network segment as a data source, checking
the packets on the network as they pass by a sensor. Packets are considered to be of
interest if they match a signature (note that ‘signature’ here means something completely
different from signatures used in public key cryptography - here signature means a
specific binary string used to identify a package which is similar to the meaning of
signature in virus scanning). Here we are mainly interested in string signatures, port
signatures, and header condition signatures. String signatures look for a text string that
indicates a possible attack. An example string signature for UNIX might be: "cat "+ +" >
/.rhosts". Port signatures simply watch for connection attempts to well-known, frequently
attacked ports. Examples of these ports include telnet (23), FTP (21/20), and IMAP (TCP
port 143). If the site doesn’t use any of these ports, then incoming packets to these ports
are suspicious. Header signatures watch for dangerous or illogical combinations in packet
headers. For example, if both the SYN and FIN flags for a TCP packet are set, then it
means the requestor wishes to start and stop a connection at the same time. Examples of
network-based ID systems vendors include:

1. Cisco Secure IDS (www.cisco.com)
2. Dragon Enterasys (http://www.enterasys.com/products/advanced-security-

apps/dragon-intrusion-detection-protection.aspx)
3. Snort ISS (http://www.snort.org/)

A good IDS capability will use both host- and network-based systems. As we have seen
above, there are numerous intrusion detection systems on the market. Since it would of
course be advantageous if all intrusion detection systems could share data on attacks,
compatibility among them is becoming more and more important. The IETF Intrusion
Detection Exchange Format (idwg) working group is working to define such a uniform data
format. Their purpose is: “… to define data formats and exchange procedures for sharing
information of interest to intrusion detection and response systems, and to management
systems which may need to interact with them.”

Firewalls

5/15

http://coast.cs.purdue.edu/pub/tools/unix
http://www.tripwiresecurity.com/
http://www.cisco.com/

As we have noticed in the previous section, firewalls have become one of the most
important tools for intrusion detection. In this section we will further our study of network
firewalls. An Internet firewall serves the same purpose as firewalls in buildings and cars: to
protect a certain area from the spread of fire and a potentially catastrophic explosion. The
spread of fire from one part of a building is controlled by putting up retaining walls, which
help to contain damage and minimize overall loss and exposure. An Internet firewall is no
different. It uses such techniques as examining Internet addresses on packets or ports
requested on incoming connections to decide what traffic is allowed into a network.
The most common firewall uses packet filtration, which blocks specified IP services (run
on specific port numbers) from crossing the gateway router. Proxies are also a common
method of protecting a network while allowing legal users to enter. Proxy services are
typically a software solution run on top of a network operating system, such as Unix,
Windows NT, or Novell Netware.
In the following we will discuss four firewall design architectures. There are many
variations on the four that you may already have seen implemented, and certainly we are
omitting several of the most complex and advanced architectures.

Packet restriction or packet filtering routers
Routers and computers that conduct packet filtration choose to send traffic to a network
based on a predefined table of rules. The router does not make decisions based on what’s
inside the packet’s payload, but rather on where it is coming from and where it is destined.
It only considers that if the packet matches a set of parameters, it should take appropriate
action to either allow or to deny the transit. These allow and deny tables are set up to
conform to the overall network security policies put in place by the network administrator
or security coordinator.

Bastion host
A bastion host or screening host, as it is sometimes called, uses both a packet filtering
mechanism provided by the router plus a secured host. A secured host is one that has
had its operating system and major services combed by a security expert. The primary
security is provided by a packet filtering router, and the secured host is used to stage
information flow in each direction. The bastion host is a security-checked machine that is
connected to the Internet using the same method as other machines. The gateway allows
traffic to pass to it in a less restricted fashion. Bastion hosts are typically used in
combination with filtering routers because simple packet filtration systems can’t filter on
the protocol or the application layer.

DMZ or perimeter zone network
A popular ploy to separate large corporate internal networks from the hostile environment
of the Net is to erect a ’routing network’ over which all inbound and outbound traffic must
travel. Huge installations generally have such networks already set up so that they can
effectively separate local traffic from metropolitan and wide-area or worldwide traffic. As
you might have guessed, a routing network consists only of routers, including those both
internally and externally connected, and usually goes by the term ’backbone’. You might
be wondering why the term DMZ is sometimes used interchangeably for a perimeter zone

6/15

network. DMZ stands for ’demilitarized zone’ and serves the same purpose as it does in
areas of geographical conflict: it is a buffer zone between two hostile parties that must
coexist in close proximity.

Proxy servers
Proxies act much like bastion hosts. Let’s illustrate the difference with an example. A
bastion host is typically set up to act as the ’delivery point’ for email inbound from the
Internet. In a mail system, a DNS MX (Domain Name Service Mail eXchanger) refers to a
domain name's mail server information. The MX record provides information about which
servers handle the domain name's email storage, distribution, or redirection. In particular,
MX records are used to deliver mail to users in the domain. When you send mail to
someone, your mail typically goes from your email client to an SMTP server. The SMTP
server then checks for the MX record of the domain in the email address. For example,
with ’joe@mydomain.com’, it would look for the MX record for mydomain.com. A DNS MX
is traditionally set up to point traffic to the bastion for delivery. From there, the bastion may
re-deliver the mail to an interior mail host (which it can see due to its position in the
firewall), or it could hold onto the mail, waiting for the client to read it with a POP mail
client. A whole selection of different firewalls can be constructed in this manner. By
contrast, a proxy service is more of an ’in-transit’ checkpoint than an information staging
area. The proxy pretends to be one end of a connection, but protects the true sender or
recipient from unwanted traffic. The service that presents the greatest challenge for
security managers is the standard File Transfer Protocol (FTP). In a typical FTP session,
the user’s ftp command opens a control channel to the target machine at port 21. The
actual data (a file transfer or listing from a directory command) is sent over a separate
data channel. The server uses port 20 for this data channel. By default, the client uses the
same port number as is used by the control channel. The FTP protocol specification
suggests that a single channel be created and kept open for all data transfer during the
session. Most common implementations create a new connection for each file. Thus a
passive FTP session can be established through proxy servers (using the control and data
ports [20 and 21] for actual data transit rather than one greater than 1023).

Defense of your hosts with Freeware

OS hardening
To protect against misconfiguration-based attacks, install the very good hardening utility
Bastille (http://sourceforge.net). Bastille essentially closes all the doors left open in a
default installation.
Network services access control
Install Wietse Venema’s TCP Wrapper (ftp://ftp.porcupine.org/pub/security/index.html).
This is a simple tool, simple to install, simple to configure and simple in operation. It is an
access control list for services run under the control of the Internet daemon.
IDS
Get the excellent Intrusion Detection Tool Snort (http://www.snort.org/). There are both
Linux version and Windows version. It will let you see what kinds of messages are
observed by your network card and let you to write your own rules for IDS. It is almost
infinitely configurable.

7/15

http://sourceforge.net/
ftp://ftp.porcupine.org/pub/security/index.html
http://www.snort.org/

Firewall
Try Shorewall (http://shorewall.net/), a freeware firewall/gateway based on linux
iptables/ipchains. You may also try Astaro’s Security Linux (http://astaro.com/), which is a
freeware sateful inspection gateway that provides proxy and VPN services.
Secure Remote Access
Never try telnet or ftp. Install OpenSSH (http://www.openssh.com/) for remote access
tools (there are both Linux and Windows versions).
Penetration Testing
After your system is set up, now try to break it. Install Nessus (http://www.nessus.org/). It
tests each port to determine what sort of listener is active.
File Integrity Utility
Finally, once your security suite is complete, install the freeware version of Tripwire (check
free download from Tucows http://www.tucows.com/preview/51673). Tripwire takes a
“snapshot” of a large number of critical binaries on your system, and stores that
information encrypted and in an obscure place.

IETF Security Working Groups
IPSec
As all of us know, the Internet is based on the TCP/IP protocol suite. In the early 1960s,
DARPA funded a project that connected universities and research agencies through a
network called ARPANET. In 1983, the TCP/IP protocols replaced the original ARPANET
NCP protocols. The TCP/IP protocols running this network were open, simple, and easy to
use. This network has since grown considerably into what is now called the ’Internet’. The
Internet is a collection of networks running the TCP/IP protocol suite. Since IP packets
have no inherent security, it is relatively easy to forge IP packet addresses, modify their
contents, replay old packets, and inspect the contents of IP packets in transit. Therefore,
there is no guarantee that IP datagrams received are (1) from the claimed sender (the
source address in the IP header); (2) that they contain the original data that the sender
placed in them; or (3) that the original data was not inspected by a third party while the
packet was being sent from source to destination. IPSec is a method recently developed
by the IETF for protecting IP datagrams. This protection takes the form of data origin
authentication, connectionless data integrity authentication, data content confidentiality,
anti-replay protection, and limited traffic flow confidentiality.
IPSec provides a standard, robust, and extensible mechanism for providing security for IP
and upper-layer protocols (e.g. UDP or TCP). A default, mandatory-to-implement suite of
algorithms is defined to assure interoperability between different implementations, and it is
relatively straightforward to add new algorithms without breaking interoperability.
IPSec protects IP datagrams by defining a method of specifying the traffic to protect, how
that traffic is to be protected, and to whom the traffic is sent. IPSec can protect packets
between hosts, between network security gateways (e.g. routers or firewalls), or between
hosts and security gateways. Since an IPSec-protected datagram is, itself, just another IP
packet, it is possible to nest security services and provide, for example, end-to-end
authentication between hosts and send that IPSec-protected data through a tunnel which
is, itself, protected by security gateways using IPSec.

8/15

http://shorewall.net/
http://astaro.com/
http://www.openssh.com/
http://www.nessus.org/

This method of protecting IP datagrams or upper-layer protocols uses one of the IPSec
protocols, the Encapsulating Security Payload (ESP) or the Authentication Header (AH).
AH provides proof-of-data origin on received packets, data integrity, and anti-replay
protection. ESP provides all that AH provides - in addition to optional data confidentiality
and limited traffic flow confidentiality. One might therefore be tempted to ask, “Why use
AH?” That’s a good question, and is a hot topic of debate in the security community. One
subtle difference between the two is the scope of coverage of authentication.
It should be noted that the ultimate security provided by AH or ESP is dependent on the
cryptographic algorithms applied to them.
The security services that IPSec provides requires shared keys to perform authentication
and/or confidentiality. A mechanism to manually add keys for these services is mandatory
to implement. This ensures interoperability of base IPSec protocols. Of course, manual
addition scales poorly so a standard method of dynamically authenticating IPSec peers,
negotiating security services, and generating shared keys is defined. This key
management protocol is called IKE - the Internet Key Exchange.

A virtual private network is a way of simulating a private network over a public network,
such as the Internet. It called virtual because it depends on the use of virtual connections -
that is, temporary connections that have no real physical presence - consisting instead of
packets routed over various machines on the Internet on an ad-hoc basis. Secure virtual
connections are created between two machines, a machine and a network, or two
networks. IPSec protocols are an essential part of Virtual Private Networks (VPN)
technologies currently available. You should read the RFC 2401 (IETF), which specifies
the architecture of IPSec. The location of IPSec within the TCP/IP suite is demonstrated in
Figure 5:

Application

TCP

IP

Application

TCP

IP with IPSec

Not secure Secure

Figure 5

SSL and TLS

9/15

Netscape Communications began considering Web security while developing its first Web
browser and designed the Secure Sockets Layer protocol (versions 1.0 to 3.0). Starting in
May 1996, the Internet Engineering Task Force (IETF) began to take responsibility for
SSL development. The IETF renamed SSL as Transport Layer Security (TLS), and
released the first official TLS specification in January 1999. Support for SSL is now built in
to almost all browsers and Web servers. The designers of SSL chose to create a separate
protocol just for security (in addition to Internet protocols that already existed), and
inserted it between the HTTP application and TCP. Since it is a new protocol, SSL
requires very few changes to the protocols detailed above and below. The most basic
function that an SSL client and server can perform is to set up a channel for encrypted
communications. The architecture is demonstrated in Figure 6:

HTTP

TCP

IP

HTTP

SSL

TCP

IP

Not secure
Secure

Figure 6

S/MIME
S/MIME is another important protocol suite for content protection. Cryptographic Message
Syntax (CMS) is one of the essential protocols in the S/MIME suite. CMS is based on RSA
DataSecurity Inc.’s PKCS (public key cryptography standards) standard #7. For those who
have further interest in S/MIME, it is referred to as S/MIME RFCs. (We will discuss more
details of content protection in XML Digital Signature schemes. There is a close
relationship between S/MIME and XML DSIG.)

IETF Security Working Groups

In summary, currently active IETF security working groups include:

Short name Full WG name

btns Better-Than-Nothing Security
("http://www.ietf.org/html.charters/btns-charter.html")

dkim Domain Keys Identified Mail
("http://www.ietf.org/html.charters/dkim-charter.html")

10/15

emu EAP Method Update
("http://www.ietf.org/html.charters/emu-charter.html")

hokey Handover Keying
("http://www.ietf.org/html.charters/hokey-charter.html")

ipsecme IP Security Maintenance and Extensions
(http://www.ietf.org/html.charters/ipsecme-charter.html)

isms Integrated Security Model for SNMP ("http://www.ietf.org/html.charters/isms-
charter.html")

keyprov Provisioning of Symmetric Keys
(http://www.ietf.org/html.charters/keyprov-charter.html)

kitten Kitten (GSS-API Next Generation)
("http://www.ietf.org/html.charters/kitten-charter.html")

krb-wg Kerberos
("http://www.ietf.org/html.charters/krb-wg-charter.html")

ltans Long-Term Archive and Notary Services
("http://www.ietf.org/html.charters/ltans-charter.html")

msec Multicast Security
("http://www.ietf.org/html.charters/msec-charter.html")

nea Network Endpoint Assessment
("http://www.ietf.org/html.charters/nea-charter.html")

pkix Public-Key Infrastructure (X.509)
("http://www.ietf.org/html.charters/pkix-charter.html")

sasl Simple Authentication and Security Layer
("http://www.ietf.org/html.charters/sasl-charter.html")

smime S/MIME Mail Security
("http://www.ietf.org/html.charters/smime-charter.html")

syslog Security Issues in Network Event Logging
("http://www.ietf.org/html.charters/syslog-charter.html")

tls Transport Layer Security
("http://www.ietf.org/html.charters/tls-charter.html")

opsec Operational Security Capabilities for IP Network Infrastructure
("http://www.ietf.org/html.charters/opsec-charter.html")

For WG web pages location see
http://www.ietf.org/html.charters/wg-dir.html#Security%20Area
or http://sec.ietf.org - Security Area Web Page

Public-Key Infrastructure (X.509) Working Group (pkix)
(http://www.ietf.org/html.charters/pkix-charter.html)

The PKIX Working Group is one of the most long lived WG at IETF. It was established in
the fall of 1995 with the goal of developing Internet standards to support X.509-based
Public Key Infrastructures (PKIs). Initially PKIX pursued this goal by profiling X.509
standards developed by the CCITT (later the ITU-T). Later, PKIX initiated the development

11/15

http://www.ietf.org/html.charters/pkix-charter.html

of standards that are not profiles of ITU-T work, but rather are independent initiatives
designed to address X.509-based PKI needs in the Internet. Over time this latter category
of work has become the major focus of PKIX work, i.e., most PKIX-generated RFCs are
no longer profiles of ITU-T X.509 documents.

PKIX has produced a number of standards track and informational RFCs. In particular.
RFC 5280 (Certificate and CRL Profile), and RCF 3281 (Attribute Certificate Profile) are
recent examples of standards track RFCs that profile ITU-T documents. PKIX will maintain
compatibility between ITU-T documents and IETF PKI standards, since the profiling of
X.509 standards for use in the Internet remains an important topic for the working group.

PKIX also pursues new work items in the PKI arena which are of sufficient interest for
Internet community. Recent developments include defining X.509 Proxy Certificate
(RFC3820) and specifying format and protocol for using the trust anchors in the certificate
path. Another important group of standards that find their usage in modern highly
distributed computing and e-commerce system includes such standards as Online
Certificate Status Protocol (OCSP) (RFC 5019), Server-based Certificate Validation
Protocol (SCVP) (RFC 5055), Certificate Management Protocol (CMP) (RFC 4210)

It is highly recommend for you to visit the PKIX WG webpage to get impression about the
standards and problems in the PKI area.

VPN
As we have discussed in the previous section, a virtual private network (VPN) is a way of
simulating a private network over a public network, such as the Internet. It is called ’virtual’
because it depends on the use of virtual connections. Secure virtual connections are
created between two machines, a machine and a network, or two networks. IPSec is one
of the main technologies that is used to implement a VPN. Several standards have been
developed for VPN networks, though in all probability, IPSec will become the one
universally used. In addition to the IPSec protocols suite, the PPTP (Point-to-Point
Tunneling Protocol) has also been used to build VPNs. PPTP is an extension of the
standard PPP protocol encapsulating network protocol datagrams within an IP packet.
Thus, the tunneling services provided by PPTP are intended to reside on top of the IP
layer. In the following, we give a brief example of VPN access via PPTP.

PPTP description
Microsoft Remote Access Services (RAS) allows a network administrator to set up a
Windows NT server within a modem bank as a dial-in point for remote users.
Authentication for RAS users takes place on the NT server. PPTP was designed to allow
users to connect a RAS server from any point on the Internet and still have the same
authentication, encryption, and corporate LAN access they would have from dialing
directly into it. Instead of dialing into a modem connected to the RAS server, end users
dial into their ISPs and use PPTP to set up a call to the server over the Internet. PPTP
and RAS use authentication and encryption methods to create a virtual private network.

Building a VPN via ISPs that support PPTP

12/15

Now let’s assume that Alice’s ISP uses a remote access switch that supports PPTP and
Alice’s corporation network has a PPTP-enabled Windows NT RAS server. Before using
PPTP services and building a VPN, Alice needs to configure her profile on her laptop so
that it knows the IP address of the RAS server at her corporate office. Then, each time
Alice dials into her PPTP-enabled ISP’s POP using Microsoft’s Dial-Up Networking, a
PPTP session is started automatically between the ISP’s remote access switch and the
corporate office’s NT server. Alice’s PPP session is tunneled through the PPTP stream,
and the NT RAS server authenticates her username and password and starts her PPP
session. The PPTP session can then tunnel the protocols that dial-up users are allowed to
use. Once the PPTP is completed and Alice is authenticated, she has access to the
corporate network as if she were on the LAN.

NB: Although most VPN packages themselves don’t implement firewalls directly, firewalls
are an integral part of a VPN. The idea is to use the firewall to keep unwanted visitors
from entering your network, while allowing VPN users through. If you don’t have a firewall
protecting your network, don’t bother with a VPN until you get one - you’re already
exposing yourself to considerable risk.

XML Security and Web Services Security

XML has been accepted extensively as the industrial standard for Internet documentation.
XML DSIG (XML Digital Signature) and XML ENC (XML Encryption) standards provide
authentication and confidentiality syntaxes for XML documents. The XKMS (XML Key
Management Scheme) standard is currently in the process of standardization. When this
is completed, XKMS will provide a mechanism for processing X.509-based public key
certificates (e.g. public key registration, certificate status verification, etc.). In the following,
we briefly discuss XML DSIG and XML ENC. However, to understand better these two
very important technologies it is recommended to read standards themselves.

The XML security provides a basis for Web Services security to protect SOAP messages
that are used in the Web Services interaction. However the Web Services security
extends wider that just protecting SOAP based messages and include such standards as
WS-Trust, WS-Federation, WS-Policy, and others. Refer to the WS-Security Roadmap
web page at http://www.ibm.com/developerworks/library/specification/ws-secmap/

Web Services security architecture has the same philosophy as ISO/Internet security and
uses actually the same approach in defining security services interfaces as “orthogonal” to
the main services. This is achieved by placing security related attributes and information
into the SOAP message header and making security services independent from the main
service call which is typically placed into the SOAP message body. In this respect WS-
Security services can be also considered as orthogonal to main services and in general
arbitrary combined.

XML Signature

13/15

We provide here a short overview of the XML Signature format using some simple
examples. A full valid XML digital signature is provided in the Appendix of this lecture.

XML Signature has the following structure:

<Signature ID?>
 <SignedInfo>
 <CanonicalizationMethod/>
 <SignatureMethod/>
 (<Reference URI? >
 (<Transforms>)?
 <DigestMethod>
 <DigestValue>
 </Reference>)+
</SignedInfo>
 <SignatureValue>
(<KeyInfo>)?
(<Object ID?>)*
</Signature>

There are three types of the XML Signature algorithms:
• Enveloped XML Signature.

An enveloped signature is a signature of either an entire document or a document
fragment, where the XML signature will itself be embedded within the signed
document. An enveloped signature transform is always used to remove the signature
structure from the signing process.

• Enveloping XML Signature
An enveloping signature is a signature where the signed data is actually embedded
within the XML signature structure. The XML signature specification provides the ability
for arbitrary XML structures or just simple data object (e.g. code or binary data) to be
embedded within a signature, for this express purpose.

• Detached XML Signature
A detached signature is a signature where the signed entities are separate from the
actual signature fragment. The signed entities can be remote XML documents or
remote non-XML documents. They can also be XML fragments located elsewhere in
the same document as the XML signature, like this takes place when the SOAP
message body is signed and the signature is placed in the special field or the message
header.

It is important to mention that WS-I Basic Security Profile for Web Services recommends
using detached signature and strongly discourages enveloping signature use, enveloped
signature can be used but it provides limited functionality for signing the document and
managing security components.

XML Signature standard defines a number of transformations required for XML Signature
signing and validation:

• Canonicalisation

• Base64

14/15

• XPath Filtering

• Envelope Signature Transform

• XSLT Transformation
A canonicalisation is required to ensure the normalised presentation of the XML document
in cases when XML format and schema validation allows options, like when using different
character encoding or not strict attributes ordering. The canonical form of an XML
document is a physical representation of the document produced by the canonicalisation
method that implies the following changes. The CanonicalizationMethod element is used
to specify what canonicalisation algorithms was used to process the original document:

<CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-
c14n-20010315" />

The SignatureMethod indicates what algorithm was used to calculate the signature. In our
case it is RSA with SHA1 as the hash fucntion.

 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

The following Reference element indicates where the to-be-signed (tbs) document is
located and what part of the document is signed. The tbs-document could be in the same
XML file or in a separate place. For example, the element

<Reference URI="http://www.w3.org/TR/xml-stylesheet">
<DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</DigestValue>
</Reference>

shows that the signature is for tbs-document http://www.w3.org/TR/xml-stylesheet
(which should be a valid URI address). It also shows that the hash value of this document
is 60NvZvtdTB+7UnlLp/H24p7h4bs= (SHA1 is used to compute the hash value). The
URI=”” means that If we want to sign the local document to which the signature is attached
or jus the element with the attribute Id=”subject”, the URI attribute will have values URI=””
or URI=”#subject”.

The SignatureValue element holds the signature value:

<SignatureValue>juS...=</SignatureValue>

It is optional to include the signer’s public key and certificate in the KeyInfo element which
is a part of the Signature element. For example, the element

<KeyInfo>
<KeyValue>

<RSAKeyValue>
 <Modulus>uCiu……… ba648=</Modulus>
 <Exponent>AQAB</Exponent>

 </RSAKeyValue>
 </KeyValue>

15/15

http://www.w3.org/TR/xml-stylesheet

</KeyInfo>

contains the signer’s RSA public key value (the recipient will use this key to verify the
signature, and the element

<X509Data>
 <X509SubjectName>CN=Merlin Hughes,O=Baltimore

Technologies\, Ltd.,ST=Dublin,C=IE</X509SubjectName>
<X509IssuerSerial>
 <X509IssuerName>CN=Test RSA CA,O=Baltimore

Technologies\, Ltd.,ST=Dublin,C=IE</X509IssuerName>
 <X509SerialNumber>970849928</X509SerialNumber>

 </X509IssuerSerial>
 <X509Certificate>MIICeDCCAeG</X509Certificate>

 </X509Data>

contains the signer’s public key certificate.

XML Encryption

XML ENC has the following format.
<EncryptedData Id? Type? MimeType? Encoding?>
 <EncryptionMethod/>?
 <ds:KeyInfo>
 <EncryptedKey>? # extension to XMLSig KeyInfo
 <AgreementMethod>?
 <ds:KeyName>?
 <ds:RetrievalMethod>?
 <ds:*>? #
 </ds:KeyInfo>?
 <CipherData> # envelopes or references the raw encrypted data
 <CipherValue>?
 <CipherReference URI?>? # location of the raw encrypted data
 </CipherData>
 <EncryptionProperties>? # e.g., timestamp
</EncryptedData>
where KeyInfo element has the same format as in XML DSIG but instead of the KeyValue
has the EncryptedKey element that contains encrypted symmetric key used to encrypt the
content of the XML document or its part (please note this difference). It is possible to use
the XML ENC standard to encrypt the whole document, a specific element, the content of
a specific element, or even the attribute value of an element. It is important to note that the
encrypted element in the XML document is replaced with the whole EncryptedData
element that may be much bigger than non-encrypted element. If you wish to find out
more, it is referred to in the standard specification.

Bibliography

Simson Garfinkel and Gene Spafford. Practical UNIX & Internet Security. 2nd edition,
O'Reilly.

16/15

Edward Amoroso. Intrusion Detection: An Introduction to Internet Surveillance,
Correlation, Trace Back, Traps, and Response. Intrusion.Net Books. ISBN 0-9666700-7-8.

RFC 2401 - Security Architecture for the Internet Protocol. [Online] Available from
http://www.ietf.org/rfc/rfc2401.txt

CERT Coordination Center. [Online] Available from http://www.cert.org/
CERT CC Publications. [Online] Available from
http://www.cert.org/search_pubs/search.php

CERT Incident Note 99-04. Similar attacks using RPC Services (1999). [Online] Available
from http://www.cert.org/incident_notes/IN-99-04.html

Distributed Denial of Service (DDoS) Attacks/tools: [Online] Available from
http://staff.washington.edu/dittrich/misc/ddos/

The Evolution of Intrusion Detection Systems. [Online] Available from
http://www.securityfocus.com/infocus/1514

Host-Based IDS vs Network-Based IDS
http://www.windowsecurity.com/articles/Hids_vs_Nids_Part1.html
http://www.windowsecurity.com/articles/Hids_vs_Nids_Part2.html

Network mapper: http://www.insecure.org/nmap/

CHIHT - Clearing House for Incident Handling Tools. http://chiht.dfn-cert.de/

The Hacker Quarterly: http://www.2600.com/.

Free antivirus tools: http://www.freeav.com

Cheswick, W., S. Bellovin Firewalls and Internet Security: Repelling the Wily Hacker. First
Edition. http://www.wilyhacker.com/1e/

XML Encryption Syntax and Processing. W3C Recommendation 10 December 2002.
[Online] Available from http://www.w3.org/TR/2002/REC-xmlenc-core-20021210/

XML Signature Syntax and Processing (Second Edition). W3C Recommendation 10 June
2008. [Online] Available from http://www.w3.org/TR/2008/REC-xmldsig-core-20080610/

RFC3275 - XML-Signature Syntax and Processing. http://www.ietf.org/rfc/rfc3275.txt

Security in a Web Services World: A Proposed Architecture and Roadmap. Whitepaper, 1
April 2002. http://www.ibm.com/developerworks/library/specification/ws-secmap/

17/15

http://www.ietf.org/rfc/rfc2401.txt
http://www.cert.org/
http://www.cert.org/incident_notes/IN-99-04.html
http://staff.washington.edu/dittrich/misc/ddos/
http://www.securityfocus.com/infocus/1514
http://www.insecure.org/nmap/
http://chiht.dfn-cert.de/
http://www.2600.com/
http://www.freeav.com/
http://www.wilyhacker.com/1e/
http://www.ibm.com/developerworks/library/specification/ws-secmap/

WS-I Basic Security Profile Version 1.0. 30 March 2007. http://www.ws-
i.org/Profiles/BasicSecurityProfile-1.0.html

Providing Integrity and Confidentiality with the XML Security: XML Digital Signature and
XML Encryption overview and usage examples. Work in progress. [Online] Available from
http://staff.science.uva.nl/~demch/analytic/draft-xmldsig-xmlenc-01.pdf

Reading requirements
Read the text: Chapter 21, skim RFC2401. Total - 44 pages

Additional reading but very useful for the project assignment in week 7 and 8:

RFC4778 - Current Operational Security Practices in Internet Service Provider
Environments. [Online] Available from http://www.ietf.org/rfc/rfc4778.txt

RFC2196 - Site Security Handbook. [Online] Available from
http://www.ietf.org/rfc/rfc2196.txt

RFC3013 - Recommended Internet Service Provider Security Services and Procedures.
[Online] Available from http://www.ietf.org/rfc/rfc3013.txt

RFC2350 - Expectations for Computer Security Incident Response . [Online] Available
from http://www.ietf.org/rfc/rfc2350.txt

Appendix: XML Signature format and example (not mandatory for
reading)

<?xml version="1.0" encoding="UTF-8" ?>
 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

<SignedInfo>
 <CanonicalizationMethod

Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-
20010315" />

 <SignatureMethod
Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

<Reference URI="http://www.w3.org/TR/xml-stylesheet">
 <DigestMethod

Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />
 <DigestValue>60NvZvtdTB+7UnlLp/H24p7h4bs=</DigestValue>

 </Reference>
 </SignedInfo>
 <SignatureValue>juS5RhJ884qoFR8flVXd/rbrSDVGn40CapgB7qeQiT+rr0Ne

kEQ6BHhUA8dT3+BCTBUQI0dBjlml9lwzENXvS83zRECjzXbMRTUtVZiPZ
G2pqKPnL2YU3A9645UCjTXU+jgFumv7k78hieAGDzNci+PQ9KRmm//ic
T7JaYztgt4=</SignatureValue>

<KeyInfo>

18/15

<KeyValue>
<RSAKeyValue>
 <Modulus>uCiukpgOaOmrq1fPUTH3CAXxuFmPjsmS4jnTKxrv0

w1JKcXtJ2M3akaV1d/karvJlmeao20jNy9r+/vKwibjM77F+
3bIkeMEGmAIUnFciJkR+ihO7b4cTuYnEi8xHtu4iMn6GODB
oEzqFQYdd8p4vrZBsvs44nTrS8qyyhba648=</Modulus>

 <Exponent>AQAB</Exponent>
 </RSAKeyValue>

 </KeyValue>
<X509Data>
 <X509SubjectName>CN=Merlin Hughes,O=Baltimore

Technologies\, Ltd.,ST=Dublin,C=IE</X509SubjectName>
<X509IssuerSerial>
 <X509IssuerName>CN=Test RSA CA,O=Baltimore

Technologies\, Ltd.,ST=Dublin,C=IE</X509IssuerName>
 <X509SerialNumber>970849928</X509SerialNumber>

 </X509IssuerSerial>
 <X509Certificate>MIICeDCCAeGgAwIBAgIEOd3+iDANBgkqhkiG9w

0BAQQFADBbMQswCQYDVQQGEwJJRTEPMA0GA1UECBMGRHVi
bGluMSUwIwYDVQQKExxCYWx0aW1vcmUgVGVjaG5vbG9naW
VzLCBMdGQuMRQwEgYDVQQDEwtUZXN0IFJTQSBDQTAeFw0w
MDEwMDYxNjMyMDdaFw0wMTEwMDYxNjMyMDRaMF0xCzAJB
gNVBAYTAklFMQ8wDQYDVQQIEwZEdWJsaW4xJTAjBgNVBAoT
HEJhbHRpbW9yZSBUZWNobm9sb2dpZXMsIEx0ZC4xFjAUBgNV
BAMTDU1lcmxpbiBIdWdoZXMwgZ8wDQYJKoZIhvcNAQEBBQA
DgY0AMIGJAoGBALgorpKYDmjpq6tXz1Ex9wgF8bhZj47JkuI50
ysa79MNSSnF7SdjN2pGldXf5Gq7yZZnmqNtIzcva/v7ysIm4zO
+xft2yJHjBBpgCFJxXIiZEfooTu2+HE7mJxIvMR7buIjJ+hjgwaB
M6hUGHXfKeL62QbL7OOJ060vKssoW2uuPAgMBAAGjRzBFMB4
GA1UdEQQXMBWBE21lcmxpbkBiYWx0aW1vcmUuaWUwDgYD
VR0PAQH/BAQDAgeAMBMGA1UdIwQMMAqACEngrZIVgu03MA
0GCSqGSIb3DQEBBAUAA4GBAHJu4JVq/WnXK2oqqfLWqes5vH
OtfX/ZhCjFyDMhzslI8am62gZedwZ9IIZIwlNRMvEDQB2zds/eE
BnIAQPl/yRLCLOfZnbA8PXrbFP5igs3qQWScBUjZVjik748HU2s
UVZOa90c0mJl2vJs/RwyLW7/uCAfC/I/k9xGr7fneoIW</X509C
ertificate>

 </X509Data>
 </KeyInfo>

 </Signature>

19/15

	Packet restriction or packet filtering routers
	Bastion host
	DMZ or perimeter zone network

	Proxy servers
	IPSec

