- 1. Design an op-amp circuit with $R'_1 = 1000\Omega$. A' = -10. $R'_0 < 10\Omega$.
- 2. Design an op-amp circuit with $R'_1 > 1M\Omega$. A' = +10. $R'_0 < 10\Omega$.
- 3. Two input voltages are $v_1(t)$ and $v_2(t)$. Design an op-amp circuit that will generate the voltage $3v_1(t) 2v_2(t)$. Its input resistance must exceed 1 k Ω and its output resistance must be less than 10 Ω . Use more than one op-amp if necessary.
- 4.
 - **8.9** Consider the inverting amplifier circuit shown in Fig. 8.17. A signal source with Thévenin resistance R_{s} is to be connected to the input. Calculate the output voltage by two different methods:
 - **a.** By combining R_{ς} and R_{\downarrow} into a single resistance R'_{\downarrow} and using Eq. (8.19).
 - **b.** By finding the input resistance R'_i for the inverting amplifier block and regarding R'_i and R'_i as a voltage divider.

Show that the results obtained via parts (a) and (b) are in agreement.

Figure 8.17:

Another circuit capable of providing voltage amplification is shown in Fig. 8.17. This circuit is known as an *inverting amplifier* because the output has the opposite sign from the input. The voltage amplification is easily found with the ideal-op-amp technique. From Assumption 1 the voltage at the (-) input terminal is taken to be zero. We write a node equation for this point, postulating, from Assumption 2, that no current enters the amplifier terminal.

Figure 8.17

Equation 8.19

$$A' = \frac{V_{OUT}}{v_{in}} = -\frac{R_F}{R_1} \quad (inverting amplifier)$$

5.

8.10 Find the open-circuit output voltage of the system shown in Fig. 8.43 as a function of the input voltage v_s .

6.

8.11 In the circuit of Fig. 8.44 find i_L in terms of v_{1N} .

Figure 8.44

7.

- 8.12 In Fig. 8.45, use the ideal-op-amp technique.
 - **a.** Find v_{OUT} as a function of v_{IN} .
 - **b.** What is the voltage at A?

Figure 8.45