1. Design an op-amp circuit with $R_{1}^{\prime}=1000 \Omega$. $\mathrm{A}^{\prime}=-10 . R_{0}^{\prime}<10 \Omega$.
2. Design an op-amp circuit with $R_{1}^{\prime}>1 \mathrm{M} \Omega$. $\mathrm{A}^{\prime}=+10 . R_{0}^{\prime}<10 \Omega$.
3. Two input voltages are $\mathrm{v}_{1}(\mathrm{t})$ and $\mathrm{v}_{2}(t)$. Design an op-amp circuit that will generate the voltage $3 v_{1}(t)-2 v_{2}(t)$. Its input resistance must exceed $1 \mathrm{k} \Omega$ and its output resistance must be less than 10Ω. Use more than one op-amp if necessary.
4.

8.9 Consider the inverting amplifier circuit shown in Fig. 8.17. A signal source with Thevenin resistance $R_{\boldsymbol{\zeta}}$ is to be connected to the input. Calculate the output voltage by two different methods:
a. By combining $R_{\mathbf{S}}$ and R_{1} into a single resistance R_{1}^{\prime} and using Eq. (8.19).
b. By finding the input resistance R^{\prime} for the inverting amplifier block and regarding $R_{\boldsymbol{S}}$ and R_{i}^{\prime} as a voltage divider.
Show that the results obtained via parts (a) and (b) are in agreement.
Figure 8.17:
Another circuit capable of providing voltage amplification is shown in Fig. 8.17. This circuit is known as an inverting amplifier because the output has the opposite sign from the input. The voltage amplification is easily found with the ideal-op-amp technique. From Assumption 1 the voltage at the (-) input terminal is taken to be zero. We write a node equation for this point. postulating, from Assumption 2, that no current enters the amplifier terminal.

Figure 8.17
Equation 8.19

$$
\mathrm{A}^{\prime}=\frac{V_{\text {OUT }}}{v_{i n}}=-\frac{R_{F}}{R_{1}} \text { (inverting amplifier) }
$$

5.

8.10 Find the open-circuit output voltage of the system shown in Fig. 8.43 as a function of the input voltage v_{s}.

Figure 8.43
6.
8.11 In the circuit of Fig. 8.44 find i_{i} in terms of $v_{\text {is. }}$

Figure 8.44
7.
8.12 In Fig. 8.45, use the ideal-op-amp technique.
a. Find v_{OU}, as a function of v_{IN}.
b. What is the voltage at A ?

Figure 8.45

