3 Kinematics

3.1 Bodies, configurations and motions

Definition: A body B is a set whose elements can be put into one-to-one correspondence
with points of a region B in three-dimensional Euclidean point space.

The elements of B are called particles (or material points), and B is called a configuration

of B.

As the body moves the configuration changes with time. Let ¢ € I C R denote time,
where [ is an interval in R. If, with each ¢ € I, we associate a unique configuration B, of
B then the family of configurations {B; : t € I} is called a motion of B. We assume that
as B moves continuously then B; changes continuously.

It is convenient to identify a reference configuration, B, say, which is an arbitrarily chosen
fixed configuration. Then, any particle P of B may be labelled by its position vector X
in B, relative to some origin O. Let x be the position vector of P in the configuration B,
at time t relative to an origin o (which need not coincide with O).

We say that B occupies the configuration B, at time ¢ — By is also referred to as the
current configuration.

[Note that B, need not be a configuration actually occupied by B during the motion, but
is often chosen to be the configuration occupied by B at some prescribed time.|

Since B, and B; are configurations of B there exists a bijection mapping x : B, — B;

such that
x = x(X) for all X € B,,

X =x"'x) forall x € B;. (3.1)
The mapping x is called the deformation of the body from B, to B;.

Since B; depends on t we write
x = x,(X), X=x'(x) (3.2)
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instead of (3.1), or
=x(X,t) forall X €B,, tel. (3.3)

For each particle P (with label X) this describes the motion of P with ¢ as parameter,
and hence the motion of B. It is usual to assume that x(X,t) is twice-continuously
differentiable with respect to position and time.

Example: Rigid motion

A motion is said to be it rigid if the distance between any two particles of B is invariant.

The motion defined by
= X(X, 1) = c(t) + Q)X. (3.4)

where c(t) is a vector and Q(t) is a proper orthogonal CT(2), is a rigid motion.

To show this we consider Y € B, so that

y =)+ Q)Y

Then
x -y =(x-y) (x—y)
=[QX-Y)]- QX -Y)]
[QTQ(X Y)]-(X-Y) (using (1.17))
=X-Y) (X-Y) (since QTQ=1)
=|X-Y]2
In fact, although we have not proved it, every rigid motion can be expressed in the form
(3.4). Note that c(t) represents a translation and Q(t) a rotation.

In the development of the basic principles of continuum mechanics a body B is endowed
with various physical properties which are represented by scalar, vector and tensor fields
defined on either B, or B, (for example, density, temperature, shape of surface). In
the case of B, the position vector X and time ¢ serve as independent variables, and
the fields are then said to be defined in terms of the referential or material description.
Alternatively, in the case of B;, x and ¢ are used and the description is said to be spatial.
The terminologies Lagrangian and FEulerian descriptions are also used in respect of B,
and B, respectively.

Rectangular Cartesian coordinate systems with basis vectors {E;} and {e;} are chosen
for B, and B; respectively, with material coordinates X; and spatial coordinates x;. Thus,
relative to origins O and o respectively, we have

X = XZE“ X = x;€e;. (35)

[Note that other vectors may be referred to either basis and tensors may be referred to
either or to both simultaneously. Thus, a vector field u and a CT(2) T may be written

u=u;E; = e,
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T = T;jEZ X Ej = j:’z]Ez X €, = T,-jei X Ej = T;‘jei X €;,

for example.|

3.2 The material derivative

The velocity v of a particle P is defined as
v:>'<—2 (X, 1) (3.6)
- - atX » V) .
i.e. the rate of change of position of P (or 0/0t at fixed X). The acceleration a of P is

2

(X, 1), (3.7)

%

Il
<.
Il

? ~ X

where the dot indicates differentiation with respect to t at fixed X.

Let ¢ be a scalar field defined on By, i.e. ¢(x,t). Since x = x (X, t), we may write

¢(X’ t) = ¢[X(X7 t)7 t] = (I)(X, t)? (38)

which defines the notation ®. Thus, any field defined on B, (respectively B,) can, through
(3.2), equally be defined on B, (respectively B;).

The material derivative of ¢ is the rate of change of ¢ at fixed material point P, i.e. at
fixed X. We write the material derivative as ¢ or D¢/ Dt.
By definition
.0
= —0(X, ).
6= Sa(X.1)

By the chain rule for partial derivatives we then have

FO(X,t) = Go(x 1) + G sro(x, 1)

= 2(x,1) + 2 - Vo(x, 1),

Using (3.6) we thus have

0 . D¢ 0
— X)) =¢p=— = — - Vo. .
DaXn=b="222 061y v 39
Similarly, for a vector field
u(x, 1) = ulx(X, 1), = U(X, 1) (3.10)
(which defines U), we obtain
0 ._Du  Ou



In particular, the acceleration a = v is given by
a=v=—+(v-V)v. (3.12)

We emphasize that
0
—| = =—| +v-V. (3.13)

3.3 Differentiation of Cartesian tensor fields

Let ¢,u, T be scalar, vector and tensor functions of position x. The operation of the
gradient operator, grad or V, on these functions with respect to the basis {e;} is defined
0
grad ¢ = V¢ = —¢ei,
8;1:Z-
_ _ ou
gradu=V®u agq®eq
= a_xq(“pep) ® €
— e we,  (3.14)

T Oz4

as follows:

gradT=VRT = %T@ei
= %(quep ®eg) ® e
= aa—;iqep ®e, ®e;,  (3.15)
and similarly for higher-order tensors. Note that the operation of grad increases the

order of the tensor by one. Contraction of gradu gives V - u. There are several possible
contractions of V ® T. We define div'T as follows.
oT,
divT = ﬁeq(ep -e;)

— the p— contraction. Since e, - e; = J;, we obtain

aT”qe (3.16)

divT = oz, q

Exercise Show that (3.11) can be written as

. Ou
u= o (Veou)v. (3.17)
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3.4 Deformation gradient

Let Grad, Div, Curl (respectively grad, div, curl) denote the gradient, divergence and
curl operators in the reference (respectively current) configuration, i.e. with respect to
X (respectively x).

We define the deformation gradient tensor F as
F(X,t) = Gradx = Grad x(X, t). (3.18)

With respect to the chosen basis vectors and with use of (3.14) we have

F=— (1,¢) O, = —¢, O E.
ox, (o) OB = G e o B,
or, in component form,
JaC (3.19)
v 0X; '

with z; = x;(X, ).

We assume that det F # 0 (to be justified shortly) so that F has an inverse F~!, given
by

F!=gradX, (3.20)
with components
0X;
F 1), =—" 3.21
) =5, (3.21)
This may be checked by means of the calculation
ox; 0X;  Ox;
FF ') = Fp(F iy = =~ = =6
( )] k( )k] 0X,, amj 837]' J
It follows from (3.19) that
axi
Fijde = 8_)(]de = dxl-,
ie.
dx = FdX, (3.22)
which has inverse
dX = Fldx. (3.23)

Equation (3.22) describes how small line elements dX of material at X transform under
the deformation into dx (which consists of the same material as dX) at x.
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Line elements transform linearly since F depends on X (and not on dX). Thus, at each

X, F is a linear mapping (i.e. a second-order tensor).

If F is independent of X then the deformation is said to be homogeneous (the same at

each point of the body).

We justify taking F to be non-singular (det F # 0) by noting that FdX # 0 if dX # 0

— a line element cannot be annihilated.

Example

Let ¢,u, T be CT(0), CT(1), CT(2) fields associated with a moving body. We establish

the following formulas:

Grad ¢ = Flgrad ¢, Gradu = (gradu)F,
Divu = Jdiv (J7'Fu), DivT = Jdiv(J'FT), (3.24)

where J is defined as
J=detF.

First, we calculate

T
T _ (O ) 9%
Ffgrad¢ = (a—XjeZ ® E]) B2,
__ Ox; O¢
= ox; (B ®ei)e, 5

_ Oz 09| 5.
T 0X; EEJ‘SW

_ Ozp 09 _ 09 _
= B—XZ;EEJ' = EE‘? = Grad (b

Next,

(gradu)F = gaxjaei ® ej> (8—2% ® Eq)
= Bos %—X’;(ez‘ ®ej)(e, ® Ey)
Ou,; 0x
— Oz; ax, € @ Eq0jp

— Ou; Ozp
T Ozp 0Xg € ® Eq

_ Ou; . _
= . € OE; = Gradu.

For the right-hand side of the third equation in (3.24), we calculate

Jdiv (J7'Fu) = J5Z(J 1 Fu,)
= pqa_ZZ + Juqai%(J_Iqu>- (%)

But,

d (71— 0X, & (71—

0o (J T Fhg) = 52 5% (T )
_ _ 7-2.0J 39X, —19X, OF,
=—J B_XTaprpq‘i‘J a_xpﬁpf
= —J 2 J(F ) G5 0X, 0ty | jro%. o'm,
- t5 95X, oz, 0X, Az, 0Xq0X,

——

Srq
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In the above, we have used F),, = 0x,/0X, and the relation

0 0T
5 (det T) = (det T)tr (T E)
Thus,
J L, 0X; 0%z, L, 0X,. 0%z,
- F)y—_ 2P
8xp(J o) J Ors 0X,0X, J Oz, 0X,0X,

Hence, (x) gives

Jdiv (J~'Fu) = F Oug  Oxp Oug  Ouy

_ — %M _ piyu
Mox,  0X,01, 0X,

Similarly,
Jdiv (J7'FT) = J;2 (J'F, T, E;)

- Ty
= T (7 o) Ty B+ Fry G B
p

(. J
-~

0wy T T T
= 3%, oo E, = %, E, =DivT.

Proof of (3.26) For a small increment ¢ in time ¢ we have
F(X, 74 0) = F(X,7) + 0F(X,7) + O(52).

Then
oJ
ot 0 0

But

det(F + 0F) = det[F(I+ 6F'F)] = (det F) det(I + 6F 'F)

= Jdet[§(F'F 4 67'T)] = J6% det(F~'F 4 6 'T)
= 03T 3 4+ 02 (F'F) + 6 ' L(F7IF) + I5(F~'F)]

— J[1+ 6 L(F'F) + O(5),
— J[1+6tr(F'F) + O(8%)].

Now the limit is easily computed as (3.26).

By following similar arguments one can readily get the components of GradJ:

0 _, OF
X, (det F) = (det F) tr (F 8Xr) :

For an alternative proof, see Q8 in Example Sheet 3.
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B,
B,

3.5 Deformation of area and volume elements

Consider a surface S, in B, which deforms into the surface S; in B;. Let X be a point on
S, and x the corresponding point on S;. Let dX and dX’ be line elements of material on
S, based at X and let dx and dx’ be their images (on S;) under the deformation. If F
denotes the deformation gradient, then

dx = FdX, dx' =FdX'. (3.27)

Let dA and da be surface area elements on S, and S; respectively, and let N and n be
unit normals at X and x respectively.

For the parallelogram with sides dX, dX’ we have
NdA = dX x dX'.
Under the deformation this becomes a parallelogram with sides dx, dx’ and area

nda = dx x dx’.

From (3.27) we obtain
F'nda = FT[(FdX) x (FdX')]
— (det F)dX x dX'

using the result from question 12 of Problem Sheet 3. Hence
nda = J(FT)™'NdA,
where J = det F. With the notation
F7 = (F7) = (F T,

this becomes
nda = JF TNdA. (3.28)
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This is an important result — it is known as Nanson’s formula, and it describes how
elements of surface area deform.

Next, consider the parallelepiped in B, formed by line elements dX, dX’, dX” at X. Its
volume dV is given by

dV = dX - (dX' x dX") = | dX dX' dX"|.
The corresponding volume dv in By is
dv = dx - (dx' x dx") = | dx dx’ dx" | = |FdX FdX' FdX" | = |F| | dX dX' dX"|,

1.e.

dv = JdV. (3.29)

By convention, volume is taken to be positive, so that

J=detF > 0. (3.30)

From (3.29) we see that J is a measure of the change in volume under the deformation.
If the deformation is such that there is no change in volume then the deformation is said
to be isochoric, and then

J=detF =1. (3.31)

For some materials many deformations are such that (3.31) holds to a good approxima-
tion, and (3.31) is adopted as an idealization. An (ideal) material for which (3.31) holds
for all deformations is called an incompressible material.

Example

A (time-dependent) deformation is defined by
21 =aX1+ X, m=a Xy, z3=X;

(the same basis vectors being chosen for X and x), where « (# 0) and /8 are constants.
Show that the deformation is isochoric.

With respect to the given Cartesian coordinates the deformation gradient F has compo-

nents
a [0
0x;
(Ej)z( Z): 0alo
6X] 0 0 1

Clearly, det F = 1, so the deformation is isochoric. It corresponds to stretching by a
factor o in the z; direction, compressing by a factor a~! in the x5 direction and then
shearing by an amount [ parallel to the x; direction, as illustrated below by application
to a square with sides of unit length.
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3.6 Further results from tensor algebra

The square root theorem

If S is a positive definite, symmetric CT(2) then there exists a unique, positive definite,
symmetric CT(2), U say, such that U? = S.

Proof Since S is symmetric we may write it in the spectral form

3
/ /
S = E sie; @ e,
i=1

where s; are the (real) eigenvalues of S and {e}} are the (unit) eigenvectors. Since S is
positive definite, we have s; > 0. Now define U by

3
/ /
U= E si€; @ e;.
i=1

Then, U is positive definite and symmetric and U? = S, as required. Uniqueness is
obvious — convince yourselves of this.

The polar decomposition theorem

Let F be a CT(2) such that detF > 0. Then there exist unique, positive definite,
symmetric tensors, U and V, and a unique proper orthogonal tensor R such that

F = RU = VR. (3.32)

Proof The tensors FF? and F'F are symmetric and positive definite. Hence, by the
square root theorem, there exist unique positive definite symmetric tensors U, V such
that

V2 =FF!, U?=F'F.

Now define R = FU~!. We need to prove that R is proper orthogonal. First, we calculate
R'R = (FU Y (FUH =U'F'FU'=U'UU ' =1
and hence we deduce that R is orthogonal. Second, we calculate
det R = det(FU™') = (det F)(det U) ™ > 0

and it follows that R is proper orthogonal.

Since U is unique, R is unique and hence F = RU. Similarly, F = VS, where S is proper
orthogonal. Thus,
F=RU=VS =RUR'R.

By uniqueness it follows that S = R and hence (3.32) holds. Note that V = RUR?.
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Corollary

If U has eigenvalues ); and eigenvectors u®?, i € {1,2,3}, then \; > 0 and )\; are also
the eigenvalues of V with eigenvectors Ru®.

Proof \; > 0 follows from symmetry and positive definiteness of U. Also, we have
V(Ru?) = VRu® = RUu"” = R(\u®) = \;(Ru®),

which shows that Ru(® are the eigenvectors of V.

3.7 Analysis of deformation
3.7.1 Stretch, extension, shear and strain
Let M and m be unit vectors along dX and dx respectively, so that dX = M|dX|, dx =

m|dx| and (3.22) gives
m|dx| = FM|dX].

Thus
]dx]Q = (FM) - (Fl\/I)\ch]2 = (FTFM) -1\/I\dX]2 (3.33)
and hence y
% = |FM| = [M - (FTFM)]V2 = A\(M), (3.34)

which defines A(M) — the stretch in the direction M at X.
Note that 0 < A(M) < 0.

Now consider a pair of line elements dX;, dX5 based at X, so that
dX1 = FXm, dX2 = FdXQ

and the angle between them is given by

M, - (FTFMS,)

cos©® =M; - M,, cosf =
P AM1)A(M2)

before and after deformation respectively.

The decrease in angle © — 6 (which may be positive or negative) is called the shear of
the direction My, M5 in the plane of My, Ms.

Next, from (3.33) we have

|dx|? — [dX|* = dX - (FT'F — I)dX. (3.35)
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The material is said to be unstrained at X if no line element changes length, i.e.
dX - (F'F —1)dX =0 for all dX,

or, equivalently,
A(M) =1 for all unit vectors M.

It follows that FTF — I = O, which allows the possibility that F is just a rotation R,
since, for orthogonal R, we have RTR = 1.

Strain is measured locally by changes in the lengths of line elements, i.e. by the value
of (3.35). Thus, the tensor FTF — I is a measure of strain. The so-called Green strain

tensor E is defined by

E = %(FTF -1 (3.36)

Using the polar decomposition (3.32) for the deformation gradient F, we may also form
the following tensor measures of deformation:

C =F'F = U2,
B = FF7 = V2. (3.37)

We refer to C and B as the right and left Cauchy-Green deformation tensors respectively.

Since U is positive definite and symmetric there exist (unit) eigenvectors u® such that

3
U=> \u”@u, (3.38)
i=1
where \; > 0 are the principal stretches of the deformation and u® are the principal
directions. Note that, in accordance with the definition (3.34), A; = A(u®”) — hence the
terminology principal stretch.

U and V are called the right and left stretch tensors respectively. The deformation F
rotates the principal axes of U into those of V as well as stretching along those directions.
The principal axes of U and V are sometimes referred to as the Lagrangian and Fulerian
principal axes respectively.

The displacement u of a particle is defined as

u=x—X,
so that
x=X+4+u
and
F = Gradx =1+ Gradu, (3.39)

where Grad u is the displacement gradient and I is the identity tensor.

[Note that (Grad X);; = 0X,;/0X,; = 0;;.]
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3.7.2 Examples of deformations

1. Homogeneous deformation.

The most general form of homogeneous deformation is given by x = FX + ¢, with F
independent of X. The following examples are all special cases of this.

2. Homogeneous simple elongation of a circular cylinder (with lateral contraction).

with u™ along the axis of the cylinder.

3. Homogeneous pure dilatation.

This is defined by Ay = Ay = A3, F = A1 and might be associated with, for example, the
deformation of a cube into a cube of a different size.

4. Homogeneous pure shear.
This is defined by A\; = A\, Ao = A71, A3 = 1, for example, or

5. Homogeneous simple shear. Simple shear is defined by the equations
T = X1 +9Xe, x2=Xy, x3=Xj,

where v (constant) is called the amount of shear, tan™! v is the shear of the directions
e1, ey, and the same basis vectors are used for both reference and current coordinates.

The deformation gradient F has components

140
&ci
Fa) = (5x) = 010

This is effectively a problem confined to the (1,2)-plane so we now restrict attention to

=41

To find the Lagrangian principal axes we consider

this plane and write

Ly
*=F'F = :
v [’YHA .

The characteristic equation for U2, from which the eigenvalues A\? are determined, is

det(U? — \2T) = 0,
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1.e.
1— )\ Y
v 1=X 42|

or, when expanded out,
M—@2+¥)N+1=0.

Let the roots be A2, A\2. Then
MNAN=2+79 MNA=1
[Note that A3 = 1 corresponds to u® = es.]
Now set Ay = A > 1, Ay = A~! so that
N HATP=2479

and hence

1 1
=A-A" A=< 14 =42
gl : Y1+

Let
u) = (cos#,sinh,0), u® = (—sinb,cosb,0).

Then the representation
yields, when restricted to two dimensions,

U? = 2 cos? @ sin @ cos 0 } \-2 [ sin? 6 —sinf cosf

sin 6 cos @ sin® 6 —sinfcos 6 cos? 0

Comparison with () shows that
N cos? 0 + A\ "2sin?f =1,
A2sin?0 + A 2cos?f =14 2,
(A2 — A% sinf cos ) = 7,

from which we may deduce that

2
tan20 = —— (
~

<<

).

|
N |

The corresponding angle for the principal axes of FFT = V2 is calculated in a similar

way. Let v&) = cospe; +sinp ey, v = —sinpe; + cos ¢ e,. The result is

mﬂ¢:% m<¢§%y
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3.8 Analysis of motion

The welocity gradient tensor, denoted L, is defined as
L =gradv (3.40)

and has components
an
L;; = 3.41
J axj ( )

with respect to the basis {e;}.

Using the second equation in (3.24) we obtain
Grad v = (grad v)F = LF.

Since v = x we also have

Gradx = 2Gradx =F.
ot

Hence, we have the important connection
F =LF. (3.42)

Using (3.26)

0 “17
a(det F) = (det F)tr (F'F)

together with (3.42) we deduce that

0
E(det F) = (det F)tr (L)

or, equivalently,
J = Jtr (L) = Jdivv, (3.43)

remembering that J = det F, tr (L) = L;; = Jv;/0x; = divv.
Thus, div v measures the rate at which volume changes during the motion.

For an isochoric motion J =1, J = 0 and hence

divv = 0. (3.44)
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3.8.1 Stretching and spin

The deformation gradient F describes how material line elements change their length
and orientation during deformation; the velocity gradient L describes the rate of these
changes. Note that while F relates B; to B,., L is independent of B,.

Write
L=D+W, (3.46)
where 1 1
D= §(L+LT), W = 5(L—LT). (3.47)
| T — —_—
symmetric skewsymmetric

In order to interpret D and W we consider the line element dX — dx = FdX. Form the

difference
dx - dx — dX - dX = (FdX) - (FdX) — dX - dX

=dX - (FTFdX) — dX - dX
=dX - (FIF - I)dX.
From (3.42) it follows that
%(dx ~dx —dX - dX) = dX - %(FTF —I)dX = dX - (F'F + FTF)dX
= dX - (FTLF + FTLTF)dX = (FdX) - (L + LT)FdX
= 2dx - (Ddx).
This shows that D measures the rate at which line elements are changing their lengths.
It is called the (Fulerian) strain-rate tensor or rate of stretching tensor. The motion is

rigid if and only if D = O.

Since

%dx = FdX = LFdX = Ldx = (D + W)dx

and we have an interpretation of D, as discussed above, it remains to interpret W. We
do this by setting D = O, so that
0

—dx = Wdx = w X dx,
ot

where w is the axial vector of W. This shows that the motion is locally a rigid rotation
and W is a measure of the rate of rotation (or spin) of line elements — W is called the
body spin. The combination of D and W shows that the motion consists of stretching
and rotation (analogous to the interpretation of U and R).

3.9 Integration of tensors
We first summarize some results from vector calculus which will be needed. The diver-

/divvdV :/ v - ndA, (3.48)
R oR
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where R is a domain in R?® and OR is its boundary (a closed surface), and v is a vector
field. An alternative form of the theorem is

/ VodV — / ndA. (3.49)
R OR
where ¢ is a scalar field, or, in index notation,
0
Cav = [ onda. (3.50)
r 0 AR

In particular, (3.50) applies to the components (which are scalar fields) T, of any CT.

Thus,

T
o gy — [ 7 pida. (3.51)

R Ox; OR

In tensor notation (3.51) is equivalent to

/ V & TdV = / T ® ndA. (3.52)
R OR

If, in particular, T is a CT(2) then contraction of (3.51), putting i = p, gives

o7,
gy = / Ty A (3.53)
R D OR
or, in tensor notation,
/ div TdV = / T ndA. (3.54)
R OR

This is an important formula and will occur frequently in the remaining sections of the
notes.

For completeness, we also recall Stokes’ theorem

/Cu Cdx = /Sw « u) - ndA, (3.55)

or its equivalent
/gbdx :/dA x Vo, (3.56)
c 5

where S is an open surface bounded by the contour C'; u is a vector field and dA = ndA.

3.10 Transport formulae

Let C;, S; and R; denote curves, surfaces and regions in B;, the current configuration of
the body. Then, the following identities hold:

d .
it pdx = /C t(qﬁdx + ¢Ldx), (3.57)
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L inda = [ {16+ otr (L)n — 6L n}da,
St

dt Js,
d .
G | o= [ 16+ ot wyan
dt R Ry
d _—
— [ u-dx= [ (u+L"u)-dx,
dt Cy Cy
d .
—/u-nda:/[u+utr(L)—Lu]-nda,
dt St St
d i
— [ udv = / [a + tr (L)u]dv.
dt R: Ry

(3.58)
(3.59)
(3.60)
(3.61)

(3.62)

Proof Use the formulae dx = FdX,nda = JF~TNdA, dv = JdV to convert the integrals
over Cy, Sy, Ry in B, to integrals over C,., S,, R, in B,, together with expressions for F and

J. We illustrate the process by proving (3.58).

& Jsu-nda =4 [ u-(JFTN)dA
(note the integral is now over S,)
=4 [¢ (JF'u) - NdA
(using the definition of transpose)
0 -
= /s Q(JF lu) -NdA

~——
at fixed X

= [ [JF M0+ JF'u+ JO(F) /0t u] - NdA.

From (3.43) we have .J = Jtr (L), and from (3.45) we have 9(F~')/0t = —F~'L. Thus,

& Js,u-nda = [ [JEta+ Jtr (L)F'u — JF'Lu] - NdA

= s {JF [+ tr (L)u — Lu]} - NdA
= [, [+ tr (L)u — Lu] - (JE-TN)dA
= fst[il +tr (L)u — Lu] - nda

(converting back to an integral over S;).

We can establish the other formulae by following the same approach.
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