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The Elman Recurrent Neural Network was employed
for the prediction of in-vitro dissolution profiles of
matrix controlled release theophylline pellet prep-
aration, leading to the potential use of an intelligent
learning system in the development of pharmaceut-
ical products with desired drug release character-
istics. A total of six different formulations containing
various matrix ratios of substance to control the
release rate of theophylline were used for exper-
imentation. By using the leave-one-out cross-vali-
dation approach, the dissolution profiles of all the
matrix ratios were consumed for training, except
for one set that was taken as a reference profile,
with which the network predicted profiles were com-
pared. Performance of the network was assessed
using the similarity factor, f2, a criterion for dissol-
ution profile comparison recommended by the United
States Food and Drug Administration. Simulation
results indicated that the Elman network was cap-
able of predicting dissolution profiles that were simi-
lar to the reference profiles with an error of less
than 8%. In addition, the Bootstrap method was
used to estimate the confidence intervals of the f2
values. The results revealed the potential of a neu-
ral-network-based intelligent system in solving non-
linear time-series prediction problems in pharma-
ceutical product development.
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1. Introduction

Artificial Neural Networks (ANNs) are simplified
models of the central nervous system. They are
networks of highly interconnected neural computing
elements that have the ability to respond to input
stimuli, and to learn to adapt to the environment.
ANNs have been shown to be effective in handling
various tasks, including pattern recognition and
classification, modelling and forecasting, adaptive
control, multisensor data fusion and noise filtering
[1].

Lately, ANNs have been successfully applied as
a problem-solving tool in the pharmaceutical indus-
try [2–6]. The most widely used ANN architecture
has been the Multi-Layer Perceptron (MLP) network
[1]. Empirically, mathematical models are used to
represent behaviours and dynamics between various
interacting components in many pharmaceutical pro-
cesses. ANNs can then be employed to predict
the parameters of mathematical models that fit the
behaviours of certain processes. For instance, the
MLP network was applied [3] to analyse the quanti-
tative relationship between several formulation fac-
tors and release parameters in a hydrophilic matrix
capsule system containing cellulose polymers. In
Takayama et al. [6], the applicability of the MLP
network in the optimisation of pharmaceutical for-
mulae for ketoprofen hydrogel ointment was demon-
strated. In these cases, the MLP network was used,
in general, to estimate the parameters of mathemat-
ical models that characterise the pharmaceutical
formulae/processes.

In our work, a recurrent ANN model has been
chosen as an alternative to a model-based approach
for the prediction of drug dissolution profiles. How-
ever, instead of estimating parameters that fit models
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of the dissolution profile as conducted by other
researchers, we have treated the entire dissolution
profile as a time-series curve. Each time point has
been used as a dependent feature in which infor-
mation contained in one time point affects further
predictions, subject to subsequent inputs.

Among ANN architectures, recurrent networks are
useful for storing information about time, and are
particularly suitable for time series prediction [7].
The specialty in recurrent networks includes
allowing internal network feedback. One salient pro-
perty of the Elman recurrent network [8] is that the
hidden unit activation functions (internal states) are
fed back at every time step to provide an additional
input in conjunction with other input features. This
recurrence gives the network dynamic properties,
which make it possible for the network to have
internal memory. As a result, they can perform
mappings that are functions of time.

In the present study, we have applied the Elman
recurrent network to predict the dissolution profiles
of a matrix controlled release theophylline pellet
preparation. The similarity between the predicted
and reference dissolution profiles was assessed using
the similarity factor, f2, a criterion recommended by
the United States Food and Drug Administration
(FDA) [9] for comparison between two dissolution
profiles. In addition, a statistical evaluation of f2 was
conducted, in which the 95% confidence intervals for
mean of the similarity factors were calculated using
the bootstrap method [10], a popular data-resampling
method in statistical analysis.

2. The Elman Network

The Elman network is a simple recurrent network
that only involves partial feedback in its architecture,
as depicted in Fig. 1. The outputs of the hidden

Fig. 1. Architecture of the Elman network.

layer are allowed to feed back to the context layer,
and to augment additional units at the input level.
The sequential input is processed in two time steps.
During the first step at time t � 1, the input units
receive the first input vector from the input
sequence. At the first time, the context units are set
to 0. Both the input units and context units activate
the hidden units. Since the context units are in the
initial state, only the input units contribute to the
activation of the hidden units at time t � 1. The
hidden units are then fed forward to activate the
output units and, at the same time, fed back to
activate the context units on the second step at time
t. Now, the context units contain the exact values
of those of the hidden units. At the next time step
t � 1, information in the context units is combined
with the input units that receive the new input
vector to activate the hidden units. The hidden units
then activate the output units, as well as the context
units at time t � 2. The above sequence is repeated
at the next time step. Thus, these context units
provide the network with information that is recur-
rent in time, which is a desirable characteristic for
handling time-series prediction problems.

2.1. Dynamics of the Elman Network

Given an input vector at time t, xt � (x1t,· ··.,xnt),
the activation functions of the hidden and output
layers of the Elman network with q hidden units
can be represented, respectively, as follows:

hi,t � ���i0 � �n

j�1

�ijxj,t � �q

l�1

�ilhl,t�1� (1)

� �(net 1) �: �i(xt,ht�1,�) i � 1,· · ·,q

ot � 	�
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� 	(net 2)

where hi,t is the output of the i hidden unit, ot is
the output estimation of the target variable, � is the
vector of parameters containing all �’s and �’s, and
�’s, �’s, 
’s are the weights from the input layer
to the hidden layer, the context layer to the hidden
layer, and the hidden layer to the output layer,
respectively. The activation functions �(·) and 	(·)
in Eqs (1) and (2) are the hyperbolic tangent sigmoid
function and log-sigmoid function, respectively, as
follows:
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The recurrent connections from the hidden layer to
the context layer are fixed at 1.0, but other connec-
tions in the network are adjustable by comparing
with a target and updating the connections using
back-propagation of an error [8]. Batch training is
employed in which weights and biases are only
updated after all of the inputs and targets have been
presented. At each epoch, the entire input sequence
is presented to the network, and its outputs are
calculated and compared with the target sequence
to generate an error sequence. For each time step,
the error is back-propagated to find gradients of
error for each weight and bias. In the present study,
the mean squared error performance criterion is
used, and weights are updated using gradient descent
with an adaptive learning rate [11]. During the
training process, the optimal learning rate changes
as the algorithm moves across the performance sur-
face. A proper setting of the learning rate can affect
the performance of the algorithm: if the learning
rate is too large, the algorithm may oscillate and
become unstable; if the learning rate is too small,
the algorithm will take a long time to converge.
Thus, an adaptive learning rate will attempt to keep
the learning step size as large as possible while
keeping learning stable [11].

3. In-vitro Dissolution Profile
Prediction

3.1. Materials and Preparations

Theophylline is a widely used drug in the manage-
ment of asthma. However, it has a relatively narrow
therapeutic index [12]. One of the reliable methods
in sustaining the rate of drug release from the
dosage form is by embedding the drug in nonsoluble
matrix materials, which can produce more uniform
serum concentrations with less fluctuation in peak-
trough levels. In the previous study by Peh and
Yuen [12], a novel multiparticulate matrix controlled
release preparation of theophylline was formulated
and evaluated in-vitro. In the preparation of the
theophylline pellets, nonsoluble matrix materials
microcrystalline cellulose (MCC) and glyceryl
monostearate (GMS) were used in retarding the rate
of drug release. In accordance with the physical
experiments conducted [12], a series of formulations
containing a constant proportion of theophylline, but
different proportions of MCC and GMS, were pre-
pared at ratios of 10:10:0, 10:8:2, 10:7:3, 10:6:4,
10:5:5 and 10:4:6.

The recurrent network analysis was performed
with the MATLAB Neural Network Toolbox [11]

package. Three inputs were used in the experiment.
Since the proportion of theophylline was held con-
stant, it was excluded as an input to the Elman
network. Hence, the first and second inputs were
the different proportions of microcrystalline cellulose
(MCC) and glyceryl monostearate (GMS) at ratios
of 10:0, 8:2, 7:3, 6:4, 5:5 and 4:6. The third input
was the time points of the dissolution profile. There
was a total of 11 time points (0, 0.25, 0.5, 1.0, 1.5,
2.0, 3.0, 4.0, 6.0, 8.0 and 10.0 hours) to form a
complete profile. On the other hand, rates of drug
release were supplied as target outputs of the net-
work.

In determining the optimum network configur-
ation, the procedure of cross-validation can be
adopted for model selection by choosing one of
several models that has the smallest estimated error
function [13]. In k-fold cross-validation, the training
data is divided at random into k subsets of
(approximately) equal size. The network is trained
k times, each time leaving out one of the subsets
from training, and using the omitted subset to test
its performance by evaluating the error function. In
our experiments, since the data samples available
are limited, we set k equal to the sample size, hence
the ‘leave-one-out’ cross-validation training method.
There was a total of 36 sets of data samples, as the
dissolution studies were conducted six times for
each of the six matrix ratios. All of the dissolution
data were used for training (30 sets of samples),
while the remaining six sets of samples containing
the same proportion of MCC and GMS were used
to compute the mean profile, which we refer to as
the reference profile of the test set. Six dissolution
profiles were predicted from the Elman network for
each matrix ratio, with different random initialisation
of the weights and biases of the network. Then, each
profile was used to compare with the corresponding
reference profile in order to assess the performance
of the network.

3.2 Performance Measurement

Comparison between the predicted profiles from the
Elman network and the reference dissolution profiles
from the physical experiments were assessed using
the similarity factor f2. The equation of f2 is as fol-
lows:

f2 � 50 � log��1 � �1
p��

p

i�1

(�ri (5)

� �ti)2��.

� 100�
where log is the logarithm based on 10, �ri and �ti
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represent the percentage dissolved at time i for the
predicted and reference profiles, respectively, and p
is the number of time points tested. Indeed, f2 is a
function of the reciprocal of mean square-root trans-
form of the sum of square distances at all points.
The f2 value lies between the interval of (�, 100).
If the dissolution rates between �ri and �ti are
identical at each time point (i.e. �p

i�1 (�ri � �ti)2 �
0), then f2 � 100. In real situations, however, we
do not expect to have the f2 value anywhere near
100. Therefore, a range that defines a test profile
which is accepted as ‘similar’ to a reference profile
is needed. FDA defines that when f2 falls between
50 and 100, then similarity of the dissolution profiles
between two products can be claimed. The agree-
ment of the lower limit (f2 � 50) is because any
sample time point of the profiles may be acceptable
if an average difference of no more than 10%
is achieved. When this 10% average difference is
substituted into Eq. (5), f2 becomes

f2�10 � 50 � log��1 � (1/P) �P
i�1

�10�2��.

� 100� � 49.89 	 50

Therefore, a predicted profile is considered similar
to a reference profile if the f2 value is no less
than 50.

3.4. Confidence Interval Estimation of the
Similarity Factor

Owing to a variation in neural network predictions,
similarity of the predicted and reference dissolution
profiles may not be reflected statistically by only
one f2 value. In our experiment, six dissolution
profiles were predicted by the network, and then
compared with the corresponding reference profile.
In addition to the mean f2 value, the confidence
interval for the mean f2 value was computed by
using the bootstrap method.

The bootstrap method has been an alternative
data-resampling method to theoretical derivation in
statistical analysis, by repeatedly resampling the
original data and making inferences from the
resamples [14]. This method is potentially superior
to large sample techniques for small sample sizes
[15]. Let z � {z1,z2,· · ·,zn} be a random sample from
an unknown distribution. In the present study, since
six dissolution profiles were predicted for every
matrix ratio of MCC and GMS, n was equivalent
to 6 and z is the random sample from distribution
f2. One needs to find an estimator and a

100(1 � �)% interval (� � 0.05 for 95% confidence
interval) for mean, �. Let

�̂ �
z1 � z2 � · · · � zn

n

The confidence interval for � is found by determin-
ing the distribution of �̂, and by finding such �̂L

and �̂U that probability Pr(�̂L � � � �̂U) � 1 � �.
The distribution of �̂ depends upon the distri-

bution of the zi’s, which is unknown. The distri-
bution of �̂ could be approximated by the normal
distribution as per the central limit theorem, only if
n is large. For the case where n is small, the
bootstrap resample z* is done by drawing a sample
of n values with replacement from z. Then, the
mean of z*, �̂*1, is calculated. The above procedure
is repeated until N bootstrap estimates are obtained,
�̂*

1, · · · �̂*
N. By sorting the bootstrap estimates in the

order of �̂*
(1) � �̂*

(2) � · · · �̂*
(N), the 100(1 � �)%

bootstrap confidence interval is (�̂*
(q1),�̂*

(q2)), where
q1 � N�/2 and q2 � N � q1 � 1.

4. Results and Discussion

In ANN applications, a problem that often arises is
the determination of the ‘optimal’ number of the
hidden units. Normally, one has to resort to empiri-
cal methods to obtain the optimum network con-
figuration that can achieve a good performance. In
our case, leave-one-out cross-validation is preferred,
as discussed in Section 3.1. After experimenting
with various numbers of neurons in the hidden layer
of the Elman network, we found that applying seven
neurons in the hidden layer gave the best perform-
ance. Table 1 summarises the mean and standard
deviation of f2 values from six experiments with
different matrix ratios of MCC and GMS using six,
seven and eight neurons, in the hidden layer. The
network with seven hidden units yielded the best
results in means and standard deviations of f2, except
for a matrix ratio of 5:5, where the mean is slightly
lower than that from eight hidden units, and for a
matrix ratio of 6:4 where the standard deviation is
larger than those from six and eight hidden nodes
(although the mean value, in this case, is higher
than others). However, the network with seven hid-
den units gave the best performance in an overall
manner with the averages of means and standard
deviations of f2 for all matrix ratios being 79.02
and 3.40, respectively. As a result, the Elman net-
work with seven hidden units was chosen for the
rest of the experiments.

Table 2 shows the complete results comprising f2

values from individual predictions, as well as the
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Table 1. Means and standard deviations (stdev) of f2 values from the Elman network with varying number of neurons
in the hidden layer.

Matrix ratios 6 hidden units 7 hidden units 8 hidden units
(MCC:GMS)

Mean Stdev Mean Stdev Mean Stdev

10:0 50.38 8.30 59.12 2.73 50.29 5.94
8:2 80.60 5.00 81.28 3.56 75.11 10.04
7:3 81.39 5.07 84.50 2.41 78.07 3.71
6:4 80.90 4.85 86.06 5.30 85.98 3.45
5:5 85.59 3.44 86.89 1.27 87.21 4.46
4:6 68.21 5.21 76.28 5.13 76.11 5.30
Average 74.51 5.31 79.02 3.40 75.46 5.49

Table 2. The f2 values of various proportion of MCC and GMS with seven hidden units in the Elman network.

MCC:GMS P1 P2 P3 P4 P5 P6 Mean

10:0 60.92 62.20 61.28 56.63 55.53 58.18 59.12
8:2 83.84 76.38 77.38 81.81 84.91 83.35 81.28
7:3 83.86 84.12 82.22 82.82 88.99 84.96 84.50
6:4 96.43 83.36 81.54 84.13 86.11 84.81 86.06
5:5 87.93 87.14 84.77 88.11 87.37 86.05 86.89
4:6 86.40 75.39 74.38 73.85 72.00 75.68 76.28

Table 3. Average difference between two dissolution pro-
files.

Difference 2% 3.5% 6% 7% 8% 10%

f2 limit 82.5 71.9 60.8 57.5 54.7 49.9

mean f2 values from six trials using different matrix
ratios of MCC and GMS. The results showed that
the Elman network could achieve a good perform-
ance in in-vitro dissolution profile predictions. All
of the f2 values are above 50; thus, we can claim
similarity between the predicted and the reference
profiles. Table 3 provides error limits of f2 from
various average distances at multiple time points by

Table 4. Bootstrap for 95% Confidence Intervals (CIs) with seven neurons in the hidden layer.

Predicted Sample 200 bootstraps 400 bootstraps 500 bootstraps 1000 bootstraps
ratio mean

Mean CI Mean CI Mean CI Mean CI

10:0 59.12 59.16 (57.24, 61.52) 59.10 (57.06, 61.01) 59.16 (57.09, 61.22) 59.06 (57.04, 60.96)
8:2 81.28 81.33 (78.78, 83.95) 81.24 (78.47, 83.95) 81.19 (78.63, 83.69) 81.37 (78.70, 83.86)
7:3 84.50 84.44 (82.98, 86.16) 84.58 (83.09, 86.48) 84.56 (83.18, 86.52) 84.47 (83.05, 86.47)
6:4 86.06 86.17 (83.04, 90.29) 86.12 (83.24, 90.59) 85.93 (83.12, 90.39) 86.12 (83.01, 90.59)
5:5 86.89 86.86 (85.91, 87.64) 86.88 (85.81, 87.70) 86.92 (85.81, 87.76) 86.92 (85.94, 87.71)
4:6 76.28 76.16 (73.23, 80.33) 76.42 (73.44, 80.64) 76.33 (73.58, 80.73) 76.32 (73.49, 80.61)

appropriate substitution in Eq. (5). By using the f2
error limits in Table 3, we can see that the difference
between the predicted and the reference profiles in
a matrix ratio of 10:0 was between 6% and 8%,
while for the rest of the matrix ratios the difference
was less than 3.5%.

The f2 value of each trial is an estimate based on
the dissolution profiles from the six predictions.
Owing to sampling variations of the estimate, the
true expected value is a function of both between
trial differences as well as within trial prediction
from one time point to another [16]. It is therefore a
biased and conservative estimate of f2. The bootstrap
method can be used as a tool to estimate the confi-
dence intervals. Table 4 shows the 95% confidence
intervals for the mean f2 values using the bootstrap
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Fig. 2. A three-dimensional plot of the three inputs to the
Elman network.

Fig. 3. Mean dissolution profiles of theophylline pellets with mixture of microcystalline cellulose (MCC) and glyceryl monostearate
(GMS) in matrix ratios of (A) 10:0, (B) 8:2, (C) 7:3, (D) 6:4, (E) 5:5 and (F) 4:6 obtained from the Elman network (�) and from
physical experiments (�).

method with 200, 400, 500 and 1000 bootstrap
samples. All of the calculated confidence intervals
were within the acceptable range of f2 specified by
the FDA. It is indicated in Shah et al. [16] that in
general, a total of 400 bootstrap samples should
give precise estimates. However, we have generated
up to a total of 1000 samples to ensure convergence
of the confidence interval estimates. From the results
in Table 4, we can see that 200 bootstrap samples
have already given a stable estimate for the confi-
dence intervals in our experiments.

Among all the results in Table 4, the predicted
profiles of a matrix ratio of 10:0 yielded the lowest
f2 value (mean f2 � 59.12), followed by the matrix
ratios 4:6, 8:2, 7:3, 6:4 and 5:5. This observation
could be due to the problem of interpolation and
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extrapolation. Interpolation refers to the process of
predicting a function within the range of the original
training data, while extrapolation refers to the pro-
cess of predicting a function beyond the range of
the original training data [17]. Basically, the network
can give a better performance in interpolation com-
pared with extrapolation of the input data. Figure 2
depicts distribution of the three inputs to the Elman
network in a three-dimensional plot. We can see
that the data sets of matrix ratios of 10:0 and 4:6
were located on the edges of the cube, encompassing
all other input data. As a result, predictions of the
matrix ratios of 10:0 and 4:6 actually amount to
extrapolation by the network. This might be the
reason for the interior results for matrix ratios of
10:0 and 4:6, compared with those from other matrix
ratios. In general, the severity of extrapolation will
increase if the distance between the subject data and
the mean of the clustered data is increased. There-
fore, profile predictions from a matrix ratio of 10:0
were interior to those from a ratio of 4:6, since the
distance from the cluster of data for the former
was further compared with the latter. For visual
comparison, the mean predicted and reference dissol-
ution profiles of various matrix ratios of MCC and
GMS are illustrated in Fig. 3. As we can see, there
was only a slight difference between the predicted
and the reference dissolution profiles for all of the
matrix ratios.

5. Conclusions

The present study has demonstrated a new appli-
cation of the Elman recurrent neural network to the
prediction of in-vitro dissolution profiles of matrix
controlled release theophylline pellets formulation.
The Elman network has performed satisfactorily in
the dissolution profile prediction of controlled
release theophylline pellets. Instead of conducting
actual experiments for each and every matrix ratio
to obtain the corresponding dissolution profiles, a
suitable intelligent system can be used to predict
the trend of the profile subject to different compo-
sitions of matrix substances. When a desired release
profile is obtained, a confirmation test can then be
conducted experimentally to verify the predicted
profile. By using this approach, a lengthy and time-
consuming experimentation to decide on the appro-
priate matrix ratio can be reduced. From our work,
the potential of using an intelligent learning system

for dissolution profile prediction is evident. There-
fore, we believe that ANNs can be used as a
powerful tool in pharmaceutical product formulation,
as well as other areas in the pharmaceutical industry,
so that the development tasks can be performed
rapidly and efficiently with an increase of pro-
ductivity, consistency and quality.
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