[image:]
[image:]
Lab week 8 – Implementing the Command Pattern and NPCs
Codebase
This lab continues from last week. You need to have completed lab 7 to continue with this labsheet and you are expected to use your own code from last week to work on this week’s tasks.

Assignment 2 Hand up
You need to submit the following from today’s lab sheet for assignment 2:
· Completed codebase zipped up as lab8.
· A single Class Diagram illustrating all entity, control and boundary classes on the one page.
· A sequence diagram illustrating how the MoveCommand executes.

Implementing the Command Pattern
The DungeonMaster class is already looking very messy (and is only going to get worse as we continue to add commands to the game). If we consider the current sequence diagram for processing a turn:

[image:]
We can see that already I have had to simplify the processCommand logic (actually what is really going on is more complicated), and we have already started to break things up with dedicated methods within DungeonMaster to help deal with the logic (like processMove). This is only going to get worse over time.

One way we can clean this up is to introduce dedicated classes to handle each command, lucky for us this problem has been tackled before and there is a dedicated command pattern which comes to our rescue!

Let’s start by specifying an abstract class to represent commands in general. Create a new interface called Command in the Control package as follows:
package mazegame.control;

public class CommandResponse
{
 private Boolean finishedGame;
 private String message;

 public CommandResponse(String message)
 {
 this.message = message;
 finishedGame = false;
 }

 public CommandResponse(String message, Boolean quitFlag)
 {
 this.message = message;
 finishedGame = quitFlag;
 }

 public void setFinishedGame(Boolean quitFlag)
 {
 finishedGame = quitFlag;
 }

 public boolean isFinishedGame()
 {
 	return finishedGame;
 }

 public String getMessage()
 {
 return message;
 }

 public void setMessage(String message)
 {
 	this.message = message;
 }
}

We are now in a position to write a command class for move and another for quit.
package mazegame.control;

import mazegame.entity.Player;

public class QuitCommand implements Command {

	public CommandResponse execute (ParsedInput input, Player thePlayer) {
		return new CommandResponse ("Thanks for playing --- Goodbye", true);
	}
}

That’s it for Quit (about the easiest command you could imagine!). Now let’s create a class for Move:

package mazegame.control;

import mazegame.entity.Exit;
import mazegame.entity.Player;

public class MoveCommand implements Command {

	public CommandResponse execute (ParsedInput userInput, Player thePlayer)
	{
		String exitLabel = (String) userInput.getArguments().get(0);
 	 	Exit desiredExit = thePlayer.getCurrentLocation().getExit(exitLabel);
 	 	if (desiredExit == null) {
 	 		return new CommandResponse("There is no exit there . . . try moving somewhere else!");
 	 	}
 	 	thePlayer.setCurrentLocation(desiredExit.getDestination());
return new CommandResponse("You find yourself looking at . . ." + thePlayer.getCurrentLocation().getDescription());
	}
}
So now we have defined our command classes, but we haven’t implemented them yet.

Before we change DungeonMaster let’s introduce one more class to keep track of the available commands. Create a new Control class called CommandHandler as follows:

package mazegame.control;

import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Set;

import mazegame.entity.Player;

public class CommandHandler {
	private HashMap<String, Command> availableCommands;
	private ArrayList<String> commands;
	private Parser theParser;
	
	public CommandHandler () {
		availableCommands = new HashMap<String, Command>();
		commands = new ArrayList<String>();
		setupCommands();
		theParser = new Parser(popArrayList());
	}
	
	private void setupCommands () {
		availableCommands.put("go", new MoveCommand());
		availableCommands.put("quit", new QuitCommand());
		availableCommands.put("move", new MoveCommand());
	}
	
	private ArrayList<String> popArrayList () {
		Set<String> set = availableCommands.keySet();
		ArrayList <String> temp = new ArrayList<String> ();
		for (String key : set) {
			temp.add(key);
		}
		return temp;
	}
	
	public CommandResponse processTurn (String userInput, Player thePlayer) {
		ParsedInput validInput = theParser.parse(userInput);
		Command theCommand = (Command) availableCommands.get(validInput.getCommand());
		return theCommand.execute(validInput, thePlayer);
	}
}

So here we maintain a Hashtable for each command class, indexed by a label. The beauty of this is:
1. We can set up aliases for different commands (such as move and go pointing to the same command).
2. When we develop new command classes we simply define the class and add it to the hashtable with a label and it works.
OK now we have our CommandHandler it is time to change DungeonMaster:
package mazegame.control;

import mazegame.boundary.IMazeClient;
import mazegame.boundary.IMazeData;
import mazegame.entity.Player;

public class DungeonMaster {
	private IMazeClient gameClient;
	private IMazeData gameData;
	private Player thePlayer;
	private CommandHandler playerTurnHandler;
	
	 public DungeonMaster(IMazeData gameData, IMazeClient gameClient) {
 this.gameData = gameData;
 this.gameClient = gameClient;
 playerTurnHandler = new CommandHandler();
 }

 public void printWelcome() {
 gameClient.playerMessage(gameData.getWelcomeMessage());
 }

 public void setupPlayer() {
 String playerName = gameClient.getReply("What name do you choose to be known by?");
 thePlayer = new Player(playerName);
 thePlayer.setCurrentLocation(gameData.getStartingLocation());
 gameClient.playerMessage("Welcome " + playerName + "\n\n");
 gameClient.playerMessage("You find yourself looking at ");
 gameClient.playerMessage(gameData.getStartingLocation().getDescription());

 // gameClient.getReply("<<Hit Enter to exit>>");
 }

 public void runGame() {
 printWelcome();
 setupPlayer();
 while (handlePlayerTurn()) {
 	 // handle npc logic later
 }
 gameClient.getReply("\n\n<<Hit enter to exit>>");
 }

 private boolean handlePlayerTurn() {
 	 CommandResponse playerResponse = playerTurnHandler.processTurn(gameClient.getCommand(), thePlayer);
 	 gameClient.playerMessage(playerResponse.getMessage());
 	 return !playerResponse.isFinishedGame();
 }
}

Our code is now cleaner and we have a flexible, extensible structure to continue adding commands. The revised process player turn sequence diagram looks like:
[image:]A problem occurs when we have invoke the move command with no arguments and our arguments ArrayList in ParsedInput is empty.
We can fix this easily with a bit of defensive coding in MoveCommand as follows:
package mazegame.control;

import mazegame.entity.Exit;
import mazegame.entity.Player;

public class MoveCommand implements Command {

	public CommandResponse execute (ParsedInput userInput, Player thePlayer)
	{
		String exitLabel = (String) userInput.getArguments().get(0);
 	 	Exit desiredExit = thePlayer.getCurrentLocation().getExit(exitLabel);
 	 	if (desiredExit == null) {
 	 		return new CommandResponse("There is no exit there . . . try moving somewhere else!");
 	 	}
 	 	thePlayer.setCurrentLocation(desiredExit.getDestination());
 	 	return new CommandResponse("You find yourself looking at . . ." + thePlayer.getCurrentLocation().getDescription());
	}
}

Now run your game for a little gameplay test, to verify it is behaving how you would like:

[image: C:\Users\psmith\Documents\Teaching Subjects\ITECH 3201 7201\ITECH 7201 Summer 2015 16\Lecture 8\Screenshots\ConsoleLab8page5.PNG]

I’m still not quite happy with the information I get from the game when I move from one location to another. So I am going to change how the results are presented. Let’s start by developing a ToString method for Location.
package mazegame.entity;

import java.util.HashMap;

public class Location {
	private HashMap exits;
	private String description;
	private String label;
	
	public Location () { }
	public Location (String description, String label){
		this.setDescription(description);
		this.setLabel(label);
		exits = new HashMap();
	}
	public boolean addExit (String exitLabel, Exit theExit){
		if (exits.containsKey(exitLabel))
			return false;
		exits.put(exitLabel, theExit);
		return true;
	}
	public Exit getExit(String exitLabel){
		return (Exit) exits.get(exitLabel);
	}	
	public String getDescription() {
		return description;
	}
	public void setDescription(String description) {
		this.description = description;
	}
	public String getLabel() {
		return label;
	}
	public void setLabel(String label) {
		this.label = label;
	}	
public String availableExits() {
 StringBuilder returnMsg = new StringBuilder();
 for (Object label: this.exits.keySet()) {
 returnMsg.append("[" + label.toString() + "] ");
 }
 return returnMsg.toString();
}

public String toString() {
 return "**********\n" + this.label + "\n**********\n"
 + "Exits found :: " + availableExits() + "\n**********\n"
 + this.description + "\n**********\n";
}
}

Now I can change my MoveCommand class accordingly:

package mazegame.control;

import mazegame.entity.Exit;
import mazegame.entity.Player;

public class MoveCommand implements Command {

	public CommandResponse execute (ParsedInput userInput, Player thePlayer) {
		if (userInput.getArguments().size() == 0) {
			return new CommandResponse ("If you want to move you need to tell me where.");
		}
		String exitLabel = (String) userInput.getArguments().get(0);
 	 	Exit desiredExit = thePlayer.getCurrentLocation().getExit(exitLabel);
 	 	if (desiredExit == null) {
 	 		return new CommandResponse("There is no exit there . . . try moving somewhere else!");
 	 	}
 	 	thePlayer.setCurrentLocation(desiredExit.getDestination());
 	 	return new CommandResponse("You successfully move " + exitLabel + " and find yourself somewhere else\n\n" + thePlayer.getCurrentLocation().toString());
	}
}
So the results now look as follows:

[image: C:\Users\psmith\Documents\Teaching Subjects\ITECH 3201 7201\ITECH 7201 Summer 2015 16\Lecture 8\Screenshots\ConsoleLab8page10.PNG]

Look Command
Before we implement the look command we should specify how we think it should behave by specifying its user story(s). Our initial RAD identified 3 “look” stories
· Look Item
· Look Character
· Look Location
[bookmark: _GoBack]I can think of a fourth as well: “look exit”. As we haven’t introduced non-playing characters or items yet let’s focus on location and exit for now:
· Look Location – the player issues the look command without arguments and the system returns a description of the current player location.
· Look Exit – the player issues the look command with an argument and if the argument matches an exit a description of the exit is returned.

Both of these user stories are related and can be completed at once by developing the LookCommand:
	package mazegame.control;

import mazegame.entity.Exit;
import mazegame.entity.Player;

public class LookCommand implements Command {
	
	private CommandResponse response;
	
	public CommandResponse execute(ParsedInput userInput, Player thePlayer) {
		response = new CommandResponse("Can't find that to look at here!");
		if(userInput.getArguments().size() == 0) {
			response.setMessage(thePlayer.getCurrentLocation().toString());
			return response;
		}
		for (Object argument: userInput.getArguments()) {
			if (thePlayer.getCurrentLocation().containsExit(argument.toString())) {
				Exit theExit = thePlayer.getCurrentLocation().getExit((String)argument);
				return new CommandResponse(theExit.getDescription());
			}
		}
		return response;
	}
}

To get this to work you need to introduce a new method in Location called ContainsExit:
	 public boolean containsExit(String exitLabel) {
		return exits.containsKey(exitLabel);
 }

And now I need to add the LookCommand to my CommandHandler:
	 private void setupCommands()
 {
 availableCommands.put("go", new MoveCommand());
		 availableCommands.put("quit", new QuitCommand());
		 availableCommands.put("move", new MoveCommand());
 availableCommands.put("look", new LookCommand());
 }

Compile this and give it a try!
[image: C:\Users\psmith\Documents\Teaching Subjects\ITECH 3201 7201\ITECH 7201 Summer 2015 16\Lecture 8\Screenshots\ConsoleLab8page12.PNG]
	CRICOS Provider No. 00103D
	Insert file name here
	Page 1 of 12

[image:]
	CRICOS Provider No. 00103D
	Insert file name here
	Page 2 of 12

[image:]
image4.png

image5.png

image1.emf
 sd Process Turn:DungeonMaster«interface»:IMazeClient:Parser:ParsedInputprocessMove(ParsedInput)GetCommand() :StringParse(String) :ParsedInputCommand() :string[command not recognised]:PlayerMessage(String)[command recognised]:processCommand()

image2.emf
 sd Process Turn:DungeonMaster«interface»:IMazeClient:CommandHand...:CommandResponsehandlePlayerTurn() :boolGetCommand() :StringProcessTurn(String, Player) :CommandResponseMessage() :stringPlayerMessage(String)

image3.png

image6.jpeg

image7.jpeg

