[image:]
[image:]
Lab week 7 – Implementing Move in the MazeGame
Explore the codebase
1. Download the “Lab 7” code (this code was discussed in the lecture and has implemented the startup use case).
2. Unzip the code and open up the solution in Eclipse by performing the following steps.
a. Open Eclipse
b. Open the file menu and click import . . .
c. From the dialog box
i. Open the “general” tab
ii. Click “Existing Projects into Workspace”
iii. Click next
d. Click “browse” and navigate that holds the lab 7 code
i. The folder ABOVE the bin and src folders
ii. Make sure the check box is clicked in the “projects” text box
iii. Click “finish”
e. The project should now appear in the “projects explorer” pane on the left of Eclipse
3. Spend some time exploring the code, change the startup location in the HardCodedData class and run the project to test the results.
4. Create an Enterprise Architect project called Lab 7 and reverse engineer the code to create class diagrams.

Creating a command parser
Before we can get started on implementing commands and adding further functionality to the Maze Game we need a way of breaking up the user input. Commands have a format of command <argument(s)> ie: move west
So what we need to do is break up our user input from a single string into a number of words, and work out which are commands and which are arguments. We can assume that the first word encountered in user input is the command, and what follows are the argument(s). We could even make our command parser a little more user friendly by dropping of commonly used words that are neither commands or useful arguments. ie: if the user typed “go to the north” we could drop to and the.

Let’s start by creating a class to represent our input after it has been parsed into command + arguments. Create a new class in the Control package called ParsedInput and enter the following:
package mazegame.control;

import java.util.ArrayList;

public class ParsedInput {
	
	private String command;
 	private ArrayList arguments;

 	public ParsedInput() {
 	setArguments(new ArrayList());
 	setCommand("");
 	}

 	public ParsedInput(String command, ArrayList arguments){
 	this.setCommand(command);
 	this.setArguments(arguments);
 	}

 	public String getCommand() {
	 	return command;
 	}

	public void setCommand(String command) {
		this.command = command;
	}

	public ArrayList getArguments() {
		return arguments;
	}

	public void setArguments(ArrayList arguments) {
		this.arguments = arguments;
	}
}

Now create a new class called Parser in the same package with the following code:
package mazegame.control;

import java.util.ArrayList;
import java.util.Arrays;

public class Parser {
	private ArrayList<String> dropWords;
 private ArrayList<String>validCommands;

 public Parser(ArrayList<String> validCommands){ 	
 dropWords = new ArrayList<String>(Arrays.asList("an","and","the","this", "to"));
 this.validCommands = validCommands;
 }

 public ParsedInput parse(String rawInput)
 {
 ParsedInput parsedInput = new ParsedInput();
 String lowercaseInput = rawInput.toLowerCase();
 ArrayList<String> stringTokens = new ArrayList<String>(Arrays.asList(lowercaseInput.split(" ")));

 for (String token : stringTokens)
 {

 if (validCommands.contains(token))
 {
 parsedInput.setCommand(token);
 }
 else if (!dropWords.contains(token))
 parsedInput.getArguments().add(token);
 }
 return parsedInput;
 }
}

So we now have a class which can parse our user input, provided it is given a list of commands when it gets constructed.
Incorporating Command handling in the DungeonMaster class
Now that we have a parser we need to put it to work. But before we do that we need to make a small change to our user interface to accommodate retrieving a command from the player.
Our IMazeClient interface currently has the following to methods declared:
	package mazegame.boundary;

public interface IMazeClient {
	public String getReply (String question);
	public void playerMessage (String message);
}

We could probably use GetReply for the purpose of retrieving commands from a player, but the method is really designed to ask player’s a question. So let’s introduce a new method specifically to capture player commands.
	package mazegame.boundary;

public interface IMazeClient {
	public String getReply (String question);
	public void playerMessage (String message);
	public String getCommand();
}

We can now adjust our SimpleConsoleClient class accordingly:
	package mazegame;

import java.util.Scanner;
import mazegame.boundary.IMazeClient;

public class SimpleConsoleClient implements IMazeClient {
	
	public String getReply (String question) {		
		System.out.println("\n" + question + " ");
		Scanner in = new Scanner (System.in);
		return in.nextLine();
	}
	
	public void playerMessage (String message) {
		System.out.print(message);		
	}
	
	public String getCommand() {
		System.out.print ("\n\n>>>\t");
		return new Scanner(System.in).nextLine();
	}
}

Now that our client is setup to retrieve commands from the user we can modify DungeonMaster as follows:
	package mazegame.control;

import java.io.IOException;
import java.util.ArrayList;

import mazegame.SimpleConsoleClient;
import mazegame.boundary.IMazeClient;
import mazegame.boundary.IMazeData;
import mazegame.entity.Player;

public class DungeonMaster {
	private IMazeClient gameClient;
	private IMazeData gameData;
	private Player thePlayer;
	private boolean continueGame;
	private ArrayList<String> commands;
	private Parser theParser;
	
	 public DungeonMaster(IMazeData gameData, IMazeClient gameClient) {
 this.gameData = gameData;
 this.gameClient = gameClient;
 this.continueGame = true;
 commands = new ArrayList<String>();
 commands.add("quit");
 commands.add("move");
 theParser = new Parser (commands);
 }

 public void printWelcome() {
 gameClient.playerMessage(gameData.getWelcomeMessage());
 }

 public void setupPlayer() {
 String playerName = gameClient.getReply("What name do you choose to be known by?");
 thePlayer = new Player(playerName);
 gameClient.playerMessage("Welcome " + playerName + "\n\n");
 gameClient.playerMessage("You find yourself looking at ");
 gameClient.playerMessage(gameData.getStartingLocation().getDescription());

 // gameClient.getReply("<<Hit Enter to exit>>");
 }

 public void runGame() {
 printWelcome();
 setupPlayer();
 while (continueGame) {
 	 continueGame = processPlayerTurn();
 }
 }

 public boolean processPlayerTurn() {
 	 ParsedInput userInput = theParser.parse(gameClient.getCommand());
 	 if (commands.contains(userInput.getCommand())) {
 		 if (userInput.getCommand().equals("quit"))
 			 return false;
 		 if (userInput.getCommand().equals("move")) {
 			 gameClient.playerMessage("You entered the move command");
 			 return true;
 		 }
 	 }
 	 gameClient.playerMessage("We don't recognise that command - try again!");
 	 return true; 	
 }
}

[bookmark: _GoBack]Build your code and run it. You should be able to test it out as follows:
[image: C:\Users\psmith\Documents\Teaching Subjects\ITECH 3201 7201\ITECH 7201 Summer 2015 16\Lecture 7\ConsoleOutput.PNG]
So our game can now interpret commands, but other than quit doesn’t really do anything. Furthermore, Our DungeonMaster class is starting to get very messy and may require refactoring. This will be dealt with next week when we discuss the Command design pattern.
Implementing the Move Player command
Our RAD describes a Move Party User Story:
· “Move Party - players specify the direction in which they wish their party to move. If an available exit exists in the direction specified the system updates the player's party location and returns a description of the new location”
At this stage we have decided to leave parties out so we rewrite the user story as:
· “Move Player - players specify the direction in which they wish to move. If an available exit exists in the direction specified the system updates the player's location and returns a description of the new location”

Let’s implement this user story by first changing the Player class as follows:
package mazegame.entity;

public class Player extends Character {
	
private Location currentLocation;

 	public Player() {
 	}

 	public Player(String name) {
	 super (name);
	}

	public Location getCurrentLocation() {
		return currentLocation;
	}

	public void setCurrentLocation(Location currentLocation) {
		this.currentLocation = currentLocation;
	}
}
Now we amend the SetupPlayer method in DungeonMaster as follows:
	 public void setupPlayer() {
 String playerName = gameClient.getReply("What name do you choose to be known by?");
 thePlayer = new Player(playerName);
 thePlayer.setCurrentLocation(gameData.getStartingLocation());
 gameClient.playerMessage("Welcome " + playerName + "\n\n");
 gameClient.playerMessage("You find yourself looking at ");
 gameClient.playerMessage(gameData.getStartingLocation().getDescription());

 // gameClient.getReply("<<Hit Enter to exit>>");
 }

	

Next we need to change the Location class so we can retrieve an Exit.
package mazegame.entity;

import java.util.HashMap;

public class Location {
	private HashMap exits;
	private String description;
	private String label;
	
	public Location () { }
	
	public Location (String description, String label) {
		this.setDescription(description);
		this.setLabel(label);
		exits = new HashMap();
	}
	
	public boolean addExit (String exitLabel, Exit theExit) {
		if (exits.containsKey(exitLabel))
			return false;
		exits.put(exitLabel, theExit);
		return true;
	}
	
	public Exit getExit(String exitLabel) {
		return (Exit) exits.get(exitLabel);
	}
		
	public String getDescription() {
		return description;
	}

	public void setDescription(String description) {
		this.description = description;
	}

	public String getLabel() {
		return label;
	}

	public void setLabel(String label) {
		this.label = label;
	}
}

Now that we have our Location class setup to retrieve an Exit we can amend the DungeonMaster class to accommodate player movement. Amend the ProcessPlayerTurn and implement a new method called processMove in DungeonMaster as follows:
public boolean processPlayerTurn() {
 	 ParsedInput userInput = theParser.parse(gameClient.getCommand());
 	 if (commands.contains(userInput.getCommand())) {
 		 if (userInput.getCommand().equals("quit"))
 			 return false;
 		 if (userInput.getCommand().equals("move")) {
 			 processMove(userInput);
 			 return true;
 		 }
 	 }
 	 gameClient.playerMessage("We don't recognise that command - try again!");
 	 return true; 	
 }

 private void processMove(ParsedInput userInput) {
 	 String exitLabel = (String) userInput.getArguments().get(0);
 	 Exit desiredExit = thePlayer.getCurrentLocation().getExit(exitLabel);
 	 if (desiredExit == null) {
 		 gameClient.playerMessage("There is no exit there . . . try moving somewhere else");
 		 return;
 	 }
 	 thePlayer.setCurrentLocation(desiredExit.getDestination());
 	 gameClient.playerMessage("You find yourself looking at ");
 	 gameClient.playerMessage(thePlayer.getCurrentLocation().getDescription());
 }
Run the game and type “move west” to verify the result. At this point we have implemented player movement but it is very crude. You might like to think about how this might be improved from a usability perspective with some play testing (for example creating a ToString method in Location including both the name of the Location and the Description and then printing that to the user might be better than just the Location description alone). But this is left as a further optional exercise for you.

	CRICOS Provider No. 00103D
	Insert file name here
	Page 1 of 9

[image:]
	CRICOS Provider No. 00103D
	Insert file name here
	Page 6 of 9

[image:]
image1.png

image2.jpeg

image3.jpeg

