
Structs

MCS2514

Yin Wang

1

First exam

• Oct 10th, Wed, 1:00PM-2:50PM
• Cover all you have learned so far +

structs+cstring+string

2

3

C++ Data Types

structured

array struct union class

address

pointer reference

simple

integral enum

char short int long bool

floating

float double long double

0

4

C++ Data Types

• There are simple data types that hold only
one value

• There are structured data types that hold
multiple values

• The array was the first example of a
structured data type that can hold multiple
values

• The structure is the second example

0

5

C++ Structs

• often we have related information of various
types that we’d like to store together for
convenient access under the same identifier…

• Why not use simple data types or arrays?

0

6

The struct Data Type

• struct used to store a collection of related
data items

• Individual components of the struct are
called its members

• Each member can be a different type of data

7

oneAnimal
5000

.id 2037581

.name “giant panda”

.genus “Ailuropoda”

.species “melanoluka”

.country “China”

.age 18

.weight 234.6

.health Good

0

8

anotherAnimal
6000

.id 5281003

.name “llama”

.genus “Lama”

.species “peruana”

.country “Peru”

.age 7

.weight 278.5

.health “Excellent”

0

9

Using the struct Data Type

• Three steps to use
– declaration of struct type
– use of struct type to define a new variable
– access of members of the struct variable(s)

• Typically declare struct type globally

10

Struct Type Declaration

struct AnimalType // declares a struct data type
{ // does not allocate any memory

long id ;
string name ;
string genus ;
string species ; struct members
string country ;
int age ;
float weight ;
string health ;

} ; // NOTE THE SEMICOLON
10

0

11

struct type Declaration

The struct declaration creates a type and names
the members of that type.

It does not allocate memory for any variables of
that type!

You still need to declare your struct variables to
use them!

0

12

Struct Variable Declaration

int main()
{
// declare variables of AnimalType
AnimalType oneAnimal ;
AnimalType anotherAnimal ;
…
}

12

0

Memory allocation for struct

• Practice:
struct A{

char i;
int j;

};
A a1;

What is the size of a1?
How about other type of structs?

13

14

More about struct declarations

If the struct type declaration precedes all functions it will
be visible throughout the rest of the file. If it is placed
within a function, only that function can use it.

It is common to place struct type declarations within a (.h)
header file and #include that file (more on this later).

It is possible for members of different struct types to have
the same identifiers. Also a non-struct variable may
have the same identifier as a structure member.

0

15

Accessing struct Members

Dot (period) is the member selection operator.

After the struct type declaration, the various members can
be used in your program only when they are preceded by
a struct variable name and a dot.

EXAMPLES
oneAnimal.weight
anotherAnimal.country

0

16

Valid operations on a struct member depend
only on its type

oneAnimal.age = 18;

oneAnimal.id = 2037581;

cin >> oneAnimal.weight;

getline (cin, oneAnimal.species);

oneAnimal.name = “giant panda”;

oneAnimal.genus[0] = toupper (oneAnimal.genus[0]) ;

oneAnimal.age++;

0

17

Aggregate Operation

• is an operation on a data structure as a
whole, as opposed to an operation on an
individual component of the data
structure

0

18

Aggregate struct Operations

I/O, arithmetic, and comparisons of entire struct variables are
NOT ALLOWED!

Operations valid on an entire struct type variable:

• assignment to another struct variable of same type,

• pass to a function as argument (by value or by reference),

• return as value of a function

0

19

Assignment

• struct copy or assignment

anotherAnimal = oneAnimal;

• Copies each member from oneAnimal
struct to anotherAnimal struct

20

Passing as a “By-Value” Argument

• Actual and formal parameters must be same
type struct

• Using structs as arguments can shorten
argument list

• Passing structs by value can be inefficient,
since it duplicates values of all members

21

void WriteOut(AnimalType thisAnimal)
// Prints out values of all members of thisAnimal
// Precondition: all members of thisAnimal are assigned
// Postcondition: all members have been written out
{

cout << “ID # “ << thisAnimal.id << thisAnimal.name << endl ;

cout << thisAnimal.genus << thisAnimal.species << endl ;

cout << thisAnimal.country << endl ;

cout << thisAnimal.age << “ years “ << endl ;

cout << thisAnimal.weight << “ lbs. “ << endl ;

cout << “General health : “ ;

WriteWord (thisAnimal.health) ;
}

21

0

22

Passing struct by Reference

• Same as other reference parameters
– use & to identify in parameter list

23

void IncrementAge (AnimalType& thisAnimal)

// Adds 1 to age
// Precondition: thisAnimal.age is assigned
// Postcondition: thisAnimal.age == thisAnimal.age@entry + 1

{

thisAnimal.age++ ;

}

Passing a struct by Reference
0

Code efficiency about using
structs
• Question: ……..

24

25

Passing struct by Reference with
const

• Can also use constant reference to avoid
copying large structs but keep function from
modifying contents:
– precede parameter with reserved word const

void WriteOut(const AnimalType& thisAnimal)

26

struct as a Return Value

• You can also return an entire struct variable
from a function.

27

Comparison (Relational Operators)

• Compare struct variables member-wise
(NOT THE WHOLE STRUCTURE)

• What does it mean for one animal to be
greater than another?

• It makes more sense for one animal’s age to
be greater than another’s age…

if(oneAnimal.age > anotherAnimal.age)
…

0

28

Input/Output

• No aggregate input/output operations on a
struct variable

cout<<oneAnimal; //does NOT work

cin>>anotherAnimal; //does NOT work!!!

0

29

Input/Output

• Data in a struct variable must be read one
member at a time

cin>>oneAnimal.id;

• The contents of a struct variable must be
written one member at a time

cout<<oneAnimal.age;

0

30

0

Also Note that arrays CANNOT store member components of multiple types,
structures can…

31

Using Functions with Structs

• You can write utility functions to
accompany your struct data types
– Read struct data from keyboard/file
– Write struct data to a specified stream
– Etc…

32

void GetAnimalData (AnimalType& newAnimal)
// Obtains all information about an animal from

keyboard
// Postcondition: AnimalType members filled
{

cout<<“\nPlease Enter the Animal’s ID:”
cin>>newAnimal.id;

//… continue until all data is filled

}
32

0

33

Hierarchical Structures

The type of a struct member can be another
struct type. This is called nested or
hierarchical structures.

Hierarchical structures are very useful when
there is much detailed information in each
record.

FOR EXAMPLE . . .

0

34

struct MachineRec

Information about each machine in a shop contains:

an idNumber,

a written description,

the purchase date,

the cost,

and a history (including failure rate, number of days
down, and date of last service).

0

35

struct DateType
{ int month ; // Assume 1 . . 12

int day ; // Assume 1 . . 31
int year ; // Assume 1900 . . 2050

};

struct StatisticsType
{ float failRate ;

DateType lastServiced ; // DateType is a struct type
int downDays ;

} ;

struct MachineRec
{ int idNumber ;

string description ;
StatisticsType history ; // StatisticsType is a struct type
DateType purchaseDate ;
float cost ;

} ;

MachineRec machine ; 35

0

36

struct type variable machine

7000

.idNumber .description . history .purchaseDate .cost

.month .day .year

5719 “DRILLING…” 3 21 1995 8000.0

.failrate .lastServiced .downdays

.02 1 25 1999 4
.month .day .year

machine.history.lastServiced.year has value 1999

0

37

Arrays IN structs
• Two key items are associated with a list:

– Values (elements)
– Length of the list

• Define a struct containing both items:
const int CAPACITY = 1000;
struct listType
{

int listElem[CAPACITY]; //array containing the list
int listLength; //current length of the list

};

0

38

Arrays OF structs

• It is possible to declare an array of structs, after all, once
declared your struct type is another recognized data type

• The following line of code declares an array of AnimalType
structs.

AnimalType zooAnimals[NUM_ANIMALS];

• How do we access a member of one of these structures?

0

39

Summary
• Struct: collection of a fixed number of

components

• Components can be of different types

• struct is a reserved word

• No memory is allocated for a struct;
memory is allocated for struct variables
when declared

• Components of a struct are called members

0

40

Summary
• struct components are accessed by name

• Dot (.) operator is called the member access
operator

• Members of a struct are accessed using the
dot (.) operator

• The only built-in operations on a struct are
the assignment and member access

0

41

Summary
• Neither arithmetic nor relational operations

are allowed on the entire structure

• structures can be passed by value or
reference

• A function can return a structure

• A structure can be a member of another
structure

0

42

Programming Example
• A company has six salespeople

• Every month they go on road trips to sell
the company’s product

• At the end of each month, the total sales for
each salesperson, salesperson’s ID, and the
month, are recorded in a file

• At the end of each year, the manager of the
company asks for a report

0

43

Programming Example
• The data in the file are in following format.

ID1 67
ID2 78
….
….
ID1 89
ID2 98
…

• Sales data are not ordered by ID, but every 6 lines represent the sales
record for a month.

0

44

Data Design

• Design an appropriate scheme for
organizing your input data.

• Once the data is properly organized, you
can design algorithms to operate on that
data to perform the necessary tasks.

45

0

46

Output Format
----------- Annual Sales Report -------------

ID QT1 QT2 QT3 QT4 Total

12345 1892.00 0.00 494.00 322.00 2708.00
32214 343.00 892.00 9023.00 0.00 10258.00
23422 1395.00 1901.00 0.00 0.00 3296.00
57373 893.00 892.00 8834.00 0.00 10619.00
35864 2882.00 1221.00 0.00 1223.00 5326.00
54654 893.00 0.00 392.00 3420.00 4705.00
Total 8298.00 4906.00 18743.00 4965.00

Max Sale by SalesPerson: ID = 57373, Amount = $10619.00
Max Sale by Quarter: Quarter = 3, Amount = $18743.00

QT1 stands for quarter 1 (months 1 to 3), QT2 for quarter 2 (months 4
to 6), QT3 for quarter 3 (months 7 to 9) and QT4 for quarter 4
(months 10 to 12)

0

