
Foreword
This hand-out is based on the book “Write Your Own Adventure Programs” (Tyler &
Howarth, 1982). This was one of the first books I read on my way to becoming a
programmer. I was 10 when I programmed my first computer. This hand-out is an
attempt to recreate how I learned how to program. It is focused on what I learned
to become a programmer, it is not focused on how my teachers taught me how to
program! I wrote many games before I left high school and then became a serious
programmer!

Top McCurdy tips:

1. Read Code.
2. Write Code.
3. Experiment with Code.
4. Do all the example exercises… Always wonder how you can use the concepts
5. Ask yourself:

a. Why is this relevant to me?
b. How can I use this new concept?

6. Follow the steps in this hand out.
a. Read the associated code list.

7. You have access to the original book also.
a. Read that code in that book! That is such a difficult read.

Adventure Game
Writing an adventure game from scratch is quite a daunting task, especially if you
are new to computer programming. When writing any code you must have
adequate planning and testing. When writing games, they also have to be fun! This
hand-out supplements the code provided in class. We will be updating this code as
part of our in-class exercises, additionally, you are charged with making cool
updates to the code as part of your assignments! If you are so inclined you can
make your own adventure! This hand-out allows you to start as gently as you like
by giving you an adventure listing which you can type in and play, change and add
to as much as you like, or use as a skeleton program for your very own adventure
story.

What is an adventure game?
An adventure game is like a story in which the player is the hero. Unlike a book,
where the sequence of events is fixed; an adventure game is different each time it
is played because the player chooses what happens at each stage. By giving the
computer instructions in response to descriptions which appear on the screen, the
player goes on a dangerous journey into an unknown land. The aim is to survive
whatever dangers may arise and return with treasures.

What kind of program is it?
An adventure program is really a kind of database. A database is a computer filing
system which stores information and allows it to be called up in a variety of
different ways, and it can have all kinds of serious uses.

Databases: unlike our adventure, we could theoretically build a game with a
real Oracle, MySQL or SQLServer database at the back-end. You will learn
more about databases in the other classes.

An adventure program is an "interactive" database. The player moves through it,
altering or "updating" information as he does so. As you work through the book, you
will see how particular words are used as "keys" to unlock certain items of
information. This technique can be used to restrict access to certain information in
a "serious" database.

Tools: programming is a set of tools. Inputs, processes and outputs. All of
the knowledge and skills learned to write an adventure are transferable to
other programming contexts. Plus, if you are so inclined you can study more
game programming later in the degree!

Internet Search: “Adventure Game” and “First Adventure Game”. Find out
some interesting facts about adventure games. We are limited to
programming text based adventures in this course… But later, we will be
doing 2D sprite games and 3D games, if you select the games pathway.

Graphics Adventures
The original adventure did not use any graphics, relying instead on the player's
imagination to conjure up the monsters and other terrors that make up the game.
This was owing to the limitation of computing power back in the day. However, the
complexity of creating graphical games goes beyond what is expected from an
introductory course.

Programming Concepts: This course is focused on learning programming
fundamentals, inputs, validation, processing, loops, decisions, outputs,
logic, problem solving, terminology, objects, classes etc. The goal is that
you can write simple programs using these tools and concepts. We will also
teach you about debugging and testing code. As you can see there is lots to
learn!

You can learn some useful programming techniques by writing an adventure. As the
program is such a complicated one, it shows how important it is to plan it in detail
before coding on your computer! It also makes you think of all the things a person
using the program might try to do! If you work out a way of making the computer
deal with any input, however silly, you will be able to write programs which don't
crash.

Input: dealing with input is paramount to us! We don’t want people placing
the wrong information into our databases. We don’t want people to send

the wrong commands to our nuclear power plants! We have to validate and
sometime verify input.

Where to start
When you write an adventure game you are inventing a fantasy world where you
make up all the rules. You decide where it is, what sort of creatures and things
live there and what these creatures and things can and cannot do. Your world can
be an alien city, for instance, or an underground palace. Haunted House has 64
locations with short descriptions.

Data: you could add better descriptions or even add photographs (albeit
more difficult). However, as a programmer we would want to add more
functionality, monster encounters and random encounters, more verbs in
the dictionary, more objects, and more interesting puzzles. That way you
learn more programming skills and understand the concepts better.

Ideas: it is good to have an excellent game idea. But remember, in this class
we want to become programmers. You will get your chance later to produce
an awesome game idea.

A location can be indoors or out and could be a room, a cave, halfway along a
passage, an area of forest, the middle of a field, or anywhere else you like. It is
best to decide on the number of locations early on and stick to it, as this affects
the whole structure of the game.

Tip: if you plan a structure and determine it is fun, stick to it. Plan plan
plan! That is the key to lots of programming problems.

Many adventures use magic of some kind. You can decide how closely your world
sticks to the rules of the real world I and how much magic is allowed. Whatever
you choose to do, try to make sure the rules are logical or players will find the
game silly and frustrating.

Ideas: there is only one magic spell in Haunted House. Perhaps you could
add more as part of your assignments.

Having decided on a theme for your adventure world, you then need to decide on
the point of your game. The player might have to escape, or return to a certain
place, with treasures, or he might have to rescue someone, or find a secret place
and do something there (such as defusing Terrorist Bombs, Stealing Trade Secrets
for a Competitor, Battling Monsters).

Working out the locations
The areas or rooms through which the player moves during an adventure are called
locations. Later in the hand-out, you will see how these are numbered to put them
in the computer. The Haunted House has 64 locations with short descriptions. A
location can be indoors or out and could be a room, a cave, halfway along a
passage, an area of forest, the middle of a field, or anywhere else you like. It is
best to decide on the number of locations early on and stick to it, as this affects
the whole structure of the game.

Tip: Knowing the basic blueprint early is good. We all want to create the
greatest world breaking game but this takes time. I will get my friends from
the gaming industry to tell you about how long it really takes and how much
planning! Remember you are beginning your learning here not taking over
the world, or are you?

Making a map
The next stage is to draw a rough sketch map of your world. It need not be
accurate to the last detail but should show the overall scale. While you are doing
this, think of some ideas for good hiding places for treasures and other objects
that the adventurer will need. Here is a rough sketch map for the
Haunted House adventure written for this book.

Tip: in other courses on the degree you will develop maps and diagrams
describing users and their interactions with systems. It is paramount that
you construct designs to assist in building your programs.

Drawing a grid
The first stage in turning your adventure world into a computer game is to transfer
your sketch map to a squared up grid. You need one square for each location, so
for its 64 locations, the Haunted House game needs an 8 X 8 grid. This grid will
become the master plan for your adventure, so make it as large and clear as
possible. Eventually it will show all the locations and the ways in and out of them,
and all the treasures and objects used in the game. Number each location, starting
in the top left-hand comer. Most computers start counting at zero, so use zero as
your first location number.

Tip: having design and diagrams of the outside world and how users interact
with your system is important; these give us the blueprint for our program!

You may want to change the position of walls and doorways when you work out the
routes the player can take so start by pencilling your map lightly onto the grid.
Label each location with a short description, eg "dark cellar" or "dusty room" and
then think about the ways in and out of each location. The usual way of marking
these is to use points of the compass - north being towards the top of the page,
south down, east to the right and west to the left. By including staircases, ladders
or trapdoors in your descriptions, you can use up and down for some of your routes

instead of compass points. This makes the game more interesting without the need
for a real 3D grid.

Tip: remember it is about functionality! Longer descriptions may be cool but
do they add more features for the player to interact with?

It is possible to construct real 3D adventures which are set on several levels like
the storeys of a house. To do this you need two or more interlocking grids. Such
games need a lot of planning and testing!

Warning: you should always complete smaller parts of the game before
embarking on huge tasks. Try to incrementally build your game. Testing a
bigger game can become problematic for you. Bigger games are tested by
teams of people, so be aware of this!

Hiding the treasure
Having mapped out your adventure world, you need to come back to thinking
about what the player has to do in it. In many adventures, the player has to find
valuable objects of some kind and take them somewhere. These could be "real"
treasures, like gold and jewels, or they could be something like secret plans and
documents, or items of evidence to help solve a crime. If the purpose of your game
is to rescue someone, then count this as having one "treasure".

Warning: when hiding treasures you should avoid really difficult problems.
Having said that, you should have a combination of difficulty levels!

Warning: “Dead Man Walking” scenario is where a player cannot win the
game as they are unable to collect an item, that is, it is impossible to get
into a locked room as the key they need is in a location they can no longer
visit!

Question: Have you even been in the “Dead Man Walking” scenario in a
video game? I know I have! Frustrating!

Adding "props"
You need to decide what treasures to have and where to hide them. Hiding the
treasures will probably involve including some "props" in your plan. These are
pieces of furniture, carpets, items of clothing and so on which the player can open
or examine, but which cannot be taken away from the location in which they are
found. Haunted House has a coffin as one of its props.

Tips: manipulating props or simply using props can uncover clues or
treasures. You can get ideas about this from movies, TV Shows and books.
Good ideas can come from anywhere. We talk about this later in the degree
programme.

Setting problems for the player
Next you must think about the problems the player will have to solve in order to
find and carry away the treasures. The cleverer and more original the problems
you invent for the player, the more interesting the game will be to play. The
solutions to problems will often involve other objects which the player must find
and then use in the right way. You will find out about "useful" objects over the
page. Make a list of your valuable objects and number them, starting with. List the
objects in order of value as this will be useful later on for setting up the scoring
system. This is the start of the list of words you want your computer to recognize.
Make a note of the obstacles to getting each treasure too. You might have a
monster guard, for example, or a mad axe wielding troll. Treasures might be in
locked drawers, or in safes. They may prove impossible to carry without a
container of some kind which is hidden elsewhere.

Ideas: thinking about how players will use objects in the game is
interesting. What weird and wonderful combinations can you think of, it
could be possible to include that in your games later.

Now you have decided on the objects to go in your game, what are you going to let
the player do with them? You need to make a list of verbs and the things they
apply to. This should include "going" verbs too, so that players can give instructions
about where they want to move to.

Ideas: a dictionary of words would be good as would a thesaurus. That
means the player can use a variety of interesting language to communicate
with the game.

Many adventure programs are constructed so that the computer accepts commands
of not more than two words from the player. It checks the first word against a list
of verbs you have put in its memory and the second against the object and
direction words you have given it. A lot of the fun in writing adventures is trying to
think of all the combinations of verbs and objects that the player might try and
deciding on what action or reply the computer should give. Writers of business
programs need to think in this way too, to prevent their programs crashing because
of an unexpected response from the user.

Warning: all computer programs that accept inputs from the user need to
be checked. You will write many validation algorithms. You will write syntax
checkers (making sure the structure of the sentence or information is legal)
and sematic checkers (making sure the sentence makes sense!).

Example: GO NORTH is both syntactically sound and semantically sound. GO
CANDLE is syntactically sound but fails semantically.

To deal with verbs (and objects) which, the computer cannot find, you can include
general replies, such as "Do what with the (object)?" Group together verbs which
mean the same thing, such as get and take. You will be able to save memory space
by sending the computer to the same routine for both.

Tip: How could we make the error messages cooler? Could we use a
collection of different messages? Siri on the iPhone has many different
messages, we can demo this with each other.

Idea: You could implement the Eliza program, and AI agent that is easy to
program, but can masquerade as a semi-intelligent entity. You could
improve the Eliza program also.

NOTE: The haunted house list provided does not have all of these (problem and
solution) features implemented. We will implement them together in class and as
part of self-directed study.

The Master Plan
Your master plan and the lists you have made contain all the information, or data,
needed for your program. Here is the completed master plan for Haunted House.

(Don't worry if your master plan doesn't look as elaborate as this.) Over the page,
you will find out how to put this data in your computer.

Tip: Before you touch your computer, though, make sure you have planned
out your game to the last detail.

Putting the data into the computer
You now have all the data for your adventure written out on pieces of paper. The
next problem is to work out how to put it into data into the program. The
computer needs the data stored in such a way that it can get at each item quickly
and update things as the player progresses through the game. To do this, you set
up a lists. A list is like a set of pigeon holes or filing boxes, a list has some
interesting inbuilt functionality that will be useful, but more about that another
time. Haunted House Haunted House needs the following lists to hold its data. You
will need similar lists whatever the theme of your adventure.

• A list to hold the descriptions of the locations, this list has 64 items (one for
each location).

• Each location needs a way of describing the routes that are possible. The
second list is the locations list.

• We have a list to store the items and another list that shows the location of
those items in the Haunted House.

• We also have a list to store the verb and nouns.

Tip: Pick meaningful names for your lists. When you write the code you can
make your code so much easier to read, it will be like reading English!
Idea: Once you understand more about programming you could vastly
improve the code to use more effective data structures.

More Lists
Locations, routes, object words and verbs are not the only information that needs
to be stored in the computer. You also need lists to store information about where
the objects are, which objects the player is carrying and such things as whether
the light is on or off.

As well as keeping track of the things the player is carrying, the computer needs to
be able to record other changes that happen during the game, e.g. whether the
candle is alight, the door locked or the key visible. This can be implemented using
a game flags list. This has yet to be implemented.

Program Model
We will be using the Input-Processing-Output-Model to describe the Haunted House
Game. The main game loop is shown below. Notice we call the display functions
for each message we want to give to the player. We perform the check for
isEndOfGame() each time we do something in the Haunted House. The code could
be improved for readability, but you can see here it is easy to understand and it
includes the input-processing and output elements for the game itself. Organising
your code to fit the development model makes it easy for you to program, test,
read and debug!

Initialization
Setting up the data structures and filling them with data is called "initialization".
You can see in the next section where this fits into the program structure.

INPUT
Here is the line of code that accepts the only input from the player.

Tip: it is good when all of your code is organised in some way. Notice, the
code for Haunted House follows the IPO model and something called a
tiered architecture, but more about that later.

An important feature of adventure games is the way the computer responds to
instructions typed into it by the player. Haunted House, like many adventures,
limits the player to two-word sentences, plus a few special one-word commands
such as HELP. The next section of your program must ask the player for
instructions and then tell the computer what to do with them.

To start with the computer needs to split the player's input into two words which it
can then check against the words it has in its memory. The "word-splitter" routine
used in Haunted House works by scanning the player's input until it finds a gap in
the letters.

OUTPUT—Response Messages to Commands
The computer can use a MessageID to see if the player needs to be sent a message
saying his instructions are no good or the resulting message. This part of the
program is like a filter or grader. If you read the code carefully, we have a code

for each scenario and all printing is done in one location. Here is the code that
prints the messages depending on the game logic.

Tip: This is suboptimal code. You will be able to change it later.

Idea: How can you write the code so it would be easier to create a Chinese
Language version? This is one feature that you could implement. Please,
only attempt a non-English language version if you are fluent in another
language as we want you to program not be a linguist!

INPUT—Analysis and Parsing

Here is the list of verbs in the original haunted house game. Not all features have
been implemented. We will complete these in class. The associated code that will
invoke the features is called ProcessStatement(), see below.

This code extracts the verb and noun from the sentence provided by the player.
Along with the location of the player!

Idea: The code is under developed. We have hardcoded the verbs and
nouns, we have not syntactically checked the sentence nor have we checked
its syntax. In fact, with a little hard testing it would probably crash! So this
is a major area for us to work on individually and together.

Idea: silly combinations. Our program doesn't check to see if the
combination of words makes sense. A silly combination such as UNLOCK
CANDLE gets through this stage of the program, but will be rejected later on
when the computer tries to carry out the action. It is much quicker just to
check the separate words at this stage than to tell the computer to check
for valid combinations. At the end of this section of the program, the
computer has a value for VB and a value for OB. You can see what it does
with these over the next page.

The following code is flexible and is available for you to optimise and improve the
haunted house game and its associated code.

Error Messages
The computer can use the values of verb and noun to see if the player needs to be
sent a message saying his instructions are no good. This part of the program is like
a filter or grader. Here are the program lines which set up the error messages in
Haunted House—see if you can find them in the main listing. You will need similar
lines if you are writing your own adventure. Notice we have two hardcoded
messages when a user issues the Examine Command, 88 and 99.

Tip: These are what in computer terms we call magic numbers. This is a
quick and dirty short-cut. We will be removing magic numbers and
optimising the code later.

Override conditions
For monster encounters and other traps, we may want the player to have to deal
with that event and stop them from moving to another location. This functionality
has yet to be implemented.

Ideas: add Ghosts and Vampires into the story. It is a little obvious where
you could add a vampire! A stake and a hammer would be good and a hidden
item to win the game could be hidden in the Vampire’s coffin. You could
also add crucifixes, holy water and other elements.

Processing
Although some of the verb routines are longer and more complicated than this one,
they all work in a similar way: the value of noun is checked, a special message is
set up if necessary and then the computer returns to the display code. Look above
at the display code associated with this game-logic processing code.

The GO function
The functionality for the verb “GO” is large and important in an adventure game.
Seven verb commands are directed to it - GO, N, S, W, E, U and D.

This function is also special because it responds to single-letter direction
commands as well as two-word ones. You don't have to include this facility in your
program, but it does help make the game quicker and more interesting to play. If
you've played many adventures you will realize how tedious it is to have to type
GO NORTH etc. every time. This is how the GO routine works.

Idea: Remember you must create functionality to stop the player from
moving away if they are trapped and/or have to deal with another problem.

If the move has not been stopped by any of these special conditions, the computer
must check that there isn't a wall or anything else blocking the way. Here are the
lines which do this.

The code is easy to read when you look at individual functions. It gets more
complicated because functions call functions that call functions. This is why it is
important that you separate input, output, processing and storage. It is also
important that you name all of the functions appropriately. If we have a trapped
player, then it becomes obvious that we only have to change the code in the
isMovementAvailable() function!

You can change the program in this book as much as you like, either to produce
variations on the haunted house theme or to create games with completely
different settings, descriptions, objects, verbs and messages. Remember that the
more you change, the more complicated it will get as you will have to think about
how everything affects everything else. If you are going to write a new game, using
this program as a guide, then you should plan it using the same processes
described earlier. It is worth spending the time planning out your game properly as
you are less likely to find it full of mistakes when you come to run the program. It
is a good idea to start by making small changes first to see what happens. If you
store the release versions, you can make changes, test them and adapt them
without losing the original.

ADDITIONS FOR HAUNTED HOUSE

We have provided details for improvements to our programming code. This is the
area you should focus on in the exercises. Implementing your own additional
features is part of the assignments. Here are some additional features that you
could add.

Time Limits
Haunted House already has a time limit on the life of the candle. You could add an
overall time limit to the game as well by getting the computer to count the
number of turns the player has had and end the game. You could also consider the
time taken for the scoring…

Scoring
Haunted House has a very simple scoring system, awarding one point for each
object the player is carrying. You could change to a more interesting system, such
as basing the score on the value of the object. If you assume that the objects are
numbered in descending order of value, then the painting will be the most
valuable and the key the least. However, you need the key to get the painting. You
could also add penalties for doing dumb things or attacking defenceless enemies…

Penalties
So far, the scoring routine has only counted plus points and not been affected by
silly things the player might try to do. You could add a penalty system quite easily.
by using a counter, say MK, for mistakes. For instance, the original haunted house
game has the ability to climb a tree, if someone were to travel in a direction other
than down, then they would fall out of the tree.

Saving the game
Saving information is key, reading from files is also important. You could load all of
the game data from a file. This would make the code even easier to read and
better facilitates multi-language games as you could just have multiple versions of
the game data, not multiple versions of the game! We will be looking at files later.

Quit
Like most adventures, Haunted House contains traps for the player which can only
be avoided by using a certain object in a certain way. If the player doesn't have
that object he is stuck. A "quit" feature would be useful in this situation…
However, be careful about the “Dead Man Walking” problem! Especially from a
saved game scenario!

Debugging your Adventure
If you write your own version of Haunted House or use the functions in it to make a
new adventure, then you are quite likely to make mistakes. Finding mistakes and
putting them right is called debugging. Here are some of the problems you might
come across and some suggestions for fixing them.

TIP: Watch your spelling Important for program code as well as presentation text!
TIP: Spread the action. Some adventure games are a bit boring to play because
everything happens in the same place. Try to make sure there are interesting
things all through the game.
TIP: Use comments where the code is obscure. Try to write meaningful code with
variable names and function names that make sense. Use comments to separate
the code responsibilities or the tiered model or IPO (or all of them!)
TIP: Write code not comments. If your code is self-documenting and easy to read
do not write comments.

	Foreword
	Adventure Game
	What is an adventure game?
	What kind of program is it?
	Graphics Adventures
	Where to start
	Working out the locations
	Making a map
	Drawing a grid
	Hiding the treasure
	Adding "props"
	Setting problems for the player

	The Master Plan
	Putting the data into the computer
	More Lists

	Program Model
	Initialization
	INPUT
	OUTPUT—Response Messages to Commands
	INPUT—Analysis and Parsing
	Error Messages
	Override conditions
	Processing
	The GO function

	ADDITIONS FOR HAUNTED HOUSE
	Time Limits
	Scoring
	Penalties
	Saving the game
	Quit

	Debugging your Adventure

