Perform magnitude scaling on $\mathrm{f}(\mathrm{x})$ such that the scaling ranges a and b are given by user, where $a<b$ and $a>0$. The scaled output $f_{\text {scaled }}$ can be found from:

$$
f_{\text {scaled }}=\frac{(\mathrm{b}-\mathrm{a})(f(x)-\min (f(x)))}{\max (f(x))-\min (f(x))}+a
$$

1. Find mean of $f_{\text {scaled }}$ for 5 evenly divided quantiles of $f_{\text {scaled }}$ and find the frequency of occurrence within each quantile.
2. Find standard deviation of $f_{\text {scaled }}$ for 5 evenly divided quantiles of $f_{\text {scaled }}$ and find the frequency of occurrence within each quantile.
3. Find variances of $f_{\text {scaled }}$ for 5 evenly divided quantiles of $f_{\text {scaled }}$ and find the frequency of occurrence within each quantile.
4. Remove values of $f_{\text {scaled }}$ which is less than P , where P will be entered by user and $a \leq P \leq b$. Then find the means of $f_{\text {scaled }}$ for each 5 evenly divided quantiles of the new data
5. Remove values of $f_{\text {scaled }}$ which is more than P , where P will be entered by user and $a \leq P \leq b$. Then find all the standard deviations of $f_{\text {scaled }}$ for each 5 evenly divided quantiles of the new data
6. Normalize $f_{\text {scaled }}$ into $f_{\text {norm }}$ with mean \bar{y} and standard deviation σ_{y} of $f_{\text {norm }}$ is 0 and 1 respectively, where the normalization is given as:

$$
f_{\text {norm }}=\left(f_{\text {scaled }}-\operatorname{mean}\left(f_{\text {scaled }}\right)\right)\left(\frac{\sigma_{y}}{\text { std } \operatorname{dev}\left(f_{\text {scaled }}\right)}\right)+\bar{y}
$$

Show your answer in a table consists of x and $f_{\text {norm }}$
7. Linearly scale $f_{\text {scaled }}$ into $f_{\text {scaled }}^{\prime}$ where the scaling is given as:

$$
f_{\text {scaled }}^{\prime}=\frac{f_{\text {scaled }}-\min \left(f_{\text {scaled }}\right)}{\max \left(f_{\text {scaled }}\right)-\min \left(f_{\text {scaled }}\right)}
$$

Show your answer in a table consists of x and $f_{\text {scaled }}^{\prime}$
8. Normalize $f_{\text {scaled }}$ into $f_{\text {softmax }}$ using soft-max normalization such that:

$$
f_{\text {softmax }}=\frac{\log \left(\min \left(f_{\text {scaled }}\right)+2\right)}{\log \left(f_{\text {scaled }}+2\right)}
$$

Show your answer in a table consists of x and $f_{\text {softmax }}$
9. Change each $f_{\text {scaled }}$ values less than P into 0 and others into 1 , where P is specified by user. This given by:

$$
f_{\text {scaled }}= \begin{cases}1 & \text { if } f_{\text {scaled }} \geq P \\ 0 & \text { if } f_{\text {scaled }}<P\end{cases}
$$

Show your result in a table consists of x and the changed values. Then compute the number of resulting 1's and 0's.
10. Rearrange each $f_{\text {scaled }}$ values in increasing and decreasing order. Show the result in a table consists of $\mathrm{x}, f_{\text {increasing }}$ and $f_{\text {decreasing }}$
11. Given that \bar{y} and σ_{y} is the mean and standard deviation of $f_{\text {scaled }}$ respectively, find all $f_{\text {scaled }}$ values which fall in between of range of $\bar{y}-\sigma$ to $\bar{y}+\sigma$. Show the result in a table consists of x and the newly obtained $f_{\text {scaled }}$.
12. Prompt user to enter a value P such that $a \leq P \leq b$. Find the closest value to P from $f_{\text {scaled }}$ and return that value to the user.
13. Divide $f_{\text {scaled }}$ into two arrays of equal size called x and y. Find the L_{2} Norm distance between the two arrays where the L_{2} Norm distance is given as:

$$
L_{2} \text { norm }=\sqrt{\sum_{i=1}^{N}\left(x_{i}-y_{i}\right)^{2}}
$$

14. Divide $f_{\text {scaled }}$ into two arrays of equal size called x and y. Find the L_{1} Norm distance between the two arrays where the L_{1} Norm distance is given as:

$$
L_{1} n o r m=\sum_{i=1}^{N} x_{i}-y_{i}
$$

15. Divide $f_{\text {scaled }}$ into two arrays of equal size called x and y. Find the L_{3} Norm distance between the two arrays where the L_{3} Norm distance is given as:

$$
L_{3} \text { norm }=\sqrt[3]{\sum_{i=1}^{N}\left(x_{i}-y_{i}\right)^{3}}
$$

