
XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

1/20

Week 1: Lecture Notes

Introduction to XML, services and applications

Since XML was first developed by an XML Working Group formed under the
auspices of the World Wide Web Consortium (W3C) in 1996, a number of papers,
applications and what have come to be called XML services have been developed or
proposed. It would be difficult to have had anything to do with the Web in the last few
years and not have heard of XML. However, unless you are a professional working
closely with the developing standards, it is difficult to sometimes see the direction
and place all these standards and technologies in perspective. In this first week, we
will briefly discuss XML and provide a brief overview to XML Web services, their
architecture and the developing standards and technologies which are just becoming
known as XML applications.

What is XML?

XML is an acronym for Extensible Markup Language and it is a subset of the
Standard Generalised Mark-up Language (SGML), developed by Charles F.
Goldberg. The first working draft of which was published in 1980 and in 1986, it was
accepted as a standard (ISO 8879:1986) for the structure and content of electronic
documents. HTML (Hypertext Markup Language) and XML have both been defined
using SGML, and conform to SGML rules. SGML, which was designed for the world
of publishing, is too complex for the fairly simplistic world of the Web, so we have
been using HTML, developed by Tim Berners-Lee at CERN (the European
Organization for Nuclear Research) in 1990, to create the first Web pages. HTML
was specifically designed to display format data on black and white monitors and it
has a limited set of predefined tags. XML, on the other hand, is used to define the
data as distinct from the formatting.

These are the fundamental differences between HTML and XML. HTML is intended
to present hyperlinked formatted information to humans using dumb terminals, but it
led to the development of the first browser, lynx and Mosaic. The former was
designed for dumb terminals and the latter for graphics terminals. XML is for both
computers and humans, and while it does not provide formatting information, it can
provide validation and is extensible so that the number of tags is not limited. It has
much in common with a hierarchical database like IBM’s IMS and indeed an XML
document can be looked as a hierarchical database and there have been some XML
databases developed.

 XML is relatively simple, yet (probably because of the simplicity) the range of
applications and potential for XML is enormous. As a markup language solely to
describe data, XML is ideal for the interchange of data in the distributed environment
of the Web and other Networks and between diverse applications, including
hierarchical and Relational databases.

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

2/20

There were electronic exchange methods before XML, using amongst others
Electronic Data Interchange (EDI) developed in the early 1970s by the Transport
Data Coordinating Committee and running over the X.25 network which preceded
the Internet. Both EDI and X.25 and its successor Frame Relay are still well used.
EDI was developed for use with mainframe computers, often in secure environments
of government and commerce. Unlike the Internet, X.25 is a reliable network that
guarantees accurate delivery and as such, was just right for delivering important
numeric data between government and business. However, the systems were not as
flexible and although there were International standards, the national
implementations often had significant differences so that cross-border data
exchange was problematic.

EDI is still in use, as well as X.25 networks and the high speed Frame Relay for
secure private commercial networks. However, XML-based systems running over the
Internet are rapidly becoming the method of choice.

XML services

The X.25 and Frame Relay networks were built as reliable networks that guaranteed
delivery over well-defined infrastructure. The Internet and the Web is not like that.
The Internet delivery mechanism is unreliable and errors have to be corrected at the
transport layer on an end-to-end basis, leading to order of data delivery. Moreover,
the Internet utilizes a diverse infrastructure where any computer can connect, so no
one company controls the overall system.

XML allows us to exchange well-formatted messages between systems where the
format is described within the document itself. This allows message exchanges
between systems regardless of the environment on each system in the exchange.

With the thousands of applications that were developed using XML, some XML
applications were so general-purpose that they developed into a standard in their
own right, and many of these have become known as XML services.

What is a Web service?

A Web service is a modular application that is self-describing, and can be published,
located and invoked for anywhere on the Web or a local area network. The provider
and the consumer of an XML Web service don’t have to worry about the environment
on either machine as the service is based on open Internet standards such as XML
and HTTP.
 —Cauldwell, 2001

In simpler terms, an XML service is an application accessible to other applications
over the Internet. XML service takes a new approach to the old business problem of
application integration, and more recently the question of software reuse. Software
reuse has always been one of the fundamental goals of object-oriented
architectures, but has never been quite attainable. Coding for software reuse is a
good idea and should save money in the long term; however, this assumes that the

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

3/20

business requirements of the environment in which such software will operate are
stable. This is not the case, and attempting to design components to handle future
requirements is not only difficult, but usually results in wasted effort.

Similarly, software integration is also difficult to achieve. The business world is
awash with legacy systems and modern applications, a result of business-critical
older applications that are too big to replace and have been layered with years of
updates and modifications using newer technology. One way to achieve integration
is with XML services, which will replace the current models of application design with
a more flexible architecture. This should result in software systems that are more
flexible in a changing environment.

We shall look at Web services in more detail in a later lecture, but for the moment,
we need to learn a little about the underlying XML.

Markup versus content

An XML document contains two types of elements: content and markup. The content
is the actual data while as mentioned, the markup adds meaning to the data and
surrounds it. A markup elements looks as follows:

<city>

Thus, a markup element appears between an opening angle bracket (less than sign)
and a closing angle bracket (greater than sign). When we say that markup surrounds
the content (data), we mean that the content would appear in the XML document as
follows:

<city>Manchester</city>

In the above, "Manchester" is data (or content), and by itself does not mean
anything. The context, or meaning, is provided by the surrounding markup, the
<city> and </city> markup, also referred to as tags. The data is given context by the
markup. It should be clear that in the above, Manchester is a city. Thus, the XML
document is self-describing. Notice also that the markup tags come in pairs. The
<city> is an opening tag followed by the data the tag is giving context to, and </city>
is the closing tag which delineates the end of the data associated with the <city>
tag. For each opening tag, there must be an associated closing tag. This is
necessary for an XML document to be well-formed. We will discuss well-formed
documents later.

An example

The best way to begin learning about XML in detail is to begin to see examples. The
following listing (Listing 1) shows an XML document that contains a payroll record for
a particular employee. Now obviously, this is not a complete payroll record as might
appear in an actual payroll system; only a small sample of data that might be kept is
used to highlight important aspects.

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

4/20

Listing 1: XML payroll record sample

<?xml version="1.0"?>

<pay_record>
 <employeeNum>125-34</employeeNum>
 <name>
 <firstName>John</firstName>
 <lastName>Barlow</lastName>
 </name>
 <address>
 <street>12 City Road</street>
 <city>Manchester</city>
 <state>England</state>
 <zip>M70 2PP</zip>
 </address>
 <status>Full Time</status>
 <position>
 <title>Tool Designer</title>
 <description>Designs custom tools for Manufacturing</description>
 <workdays>
 <day>Monday</day>
 <day>Wednesday</day>
 <day>Friday</day>
 </workdays>
 </position>
 <salary currency="GBP">32000</salary>
 <married />
</pay_record>

Now in Listing 1, there are a number of things to note. First, as mentioned
previously, every markup tag comes in pairs, the opening and closing tags. The data
is hierarchical. For example, payroll record contains elements such as name,
address, status et cetera, but elements like name contain further subelements such
as firstName, LastName and so on. The document is also extensible as we can add
further elements to the existing definition of pay record, and subelements to some of
the elements. Also, the inclusion of the metadata (markup) adds context to all the
content. For example, without the markup, the document would look as follows:

Listing 2: Payroll record without markup

125-34
John
Barlow
12 City Road
Manchester
England
M70 2PP

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

5/20

Full Time
Tool Designer
Designs custom tools for Manufacturing
Monday
Wednesday
Friday
32000

Without the metadata, there is nothing to give meaning to the rest of the data. In this
application, you could probably determine that John Barlow is a name, which is
followed by something that looks like an address, but what about the rest of the
data? What is 125-34 and 32000, and what is the significance of Monday,
Wednesday and Friday? Also, is the name and address for a customer, bank
account or holiday booking? As you can determine, an XML document is self-
describing.

In Listing 1, notice how parts of the document are indented. For example, the
firstName and lastName tags are indented to the right between the <name> and
</name> tags. This is not a requirement of XML, but is usually done solely for the
purposes of highlighting the hierarchical nature of the content. It is only for the
human reader that this is done, in the same way that programming source code is
indented. However, when creating XML documents by hand, it is always a good idea
to indent, if only for yourself to keep track of what you are doing.

Now one last thing to note before we discuss the specific parts of the XML document
in detail: As an XML document is a markup document, it is a plain ASCII text
document, designed to be created and read in a plain text document reader such as
Windows Notepad. This is because it was the intention that XML documents be easy
to create and read. This also means that XML documents which are passed and
transmitted over the Internet are very expensive in terms of storage and bandwidth.
Twenty years ago, such storage and transmission would be unheard of; however,
storage space is a cheap commodity today, and bandwidth is not such a problem, so
XML has evolved as a product of the times.

XML document structure

An XML document has a definite structure that it must conform to, as can be seen in
Listing 1.

An XML document is structured into the following sections:

• the XML declaration
• the document type declaration, or DOCTYPE (optional)
• the XML document body which contains markup and content

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

6/20

The XML declaration

All XML documents begin with an XML declaration, which is a processing instruction,
to ensure that XML documents are read properly by XML compliant tools. Editors,
browsers and document processors use document declarations to determine how a
document should be processed. XML declarations MUST always start at the
beginning of the first line in the XML document. Any space, even non-displaying
space, may cause the parser to fail. Although strictly not required, the declaration
explicitly identifies this document as an XML document, and every XML document
should use one.

The XML declaration has the following format:

<?xml version= "xxx" standalone="xxx" encoding="xxx" ?>

The standalone and encoding components are optional, and of course are not
used in Listing 1.

Version: shows the version in use. V1.0 is common; V1.1 has relaxed criteria; V2.0
is under discussion.

Encoding; states the alphabet in use, which may be UTF-8, UTF-16, ISO 8859-1 to
ISO 8859-9, UCS-4, Windows-1252, etc.

XML 1.0 is the most common version in use. The later version, 1.1, provides for non-
Unicode character sets and is not generally required.

If the encoding attribute is omitted, the default is the standard US-ASCII, but as this
is a limited character set, it is generally important to specify the correct encoding.
UTF-8 and UTF-16 are the most common and support single-byte and double-byte
Unicode, respectively.

The standalone attribute indicates whether other documents will be used in
determining what is valid for the current document. XML documents can use
Document Type Definitions (DTDs) to define the set of valid tags and so determine if
the content of the current document is valid. We will cover DTD in detail later, but if
the standalone attribute is set to "yes," then the document is standalone and doesn’t
use an external document to validate the content. A standalone document should
have an internal DTD included. If it doesn’t, then the document is not validated
against any criteria, and all the markup tags within the document are accepted as is,
provided they conform to well-formed rules, which we’ll cover later. If the standalone
attribute is omitted, then the default is standalone="yes".

The Document Type Declaration

After the XML declaration, we can optionally include a document type declaration. If
the XML document has an associated DTD (either external or internal), then we’ll
need to include one. The XML document in Listing 1 doesn’t have a DTD, so no

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

7/20

document type declaration was included. A document type declaration looks like the
following

<!DOCTYPE root-element SYSTEM "file" [] >

Now not all of the attributes in the above type declaration are always needed.
However, if a type declaration is used, the root-element must be included. The root-
element is the first tag that appears in the XML document body. In Listing 1 above, it
would be pay_record. We will discuss the tree-like structure of the document body
shortly.

If there is an associated external DTD, then the SYSTEM attribute is included,
followed by file, which is the URL (Uniform Resource Locator) of the external file
containing the DTD for this XML document.

If the XML document has an internal DTD, then it is included in the square brackets [
]. An XML document can have an external DTD, an internal DTD or both. If it
contains both, then the internal DTD will override the external DTD where there is a
conflict.

The XML document body

The remainder of the XML document, the document body, is made up of the markup
tags and the content which is formatted in a tree-like structure. Figure 1 below
represents the structure of the document we just created in Listing 1. An XML
document has a single root element, which contains all of the document’s other
elements.

Figure 1: XML document structure

The structure of an XML document is essentially a tree. The root element is the top-
level element (in this case, the <pay_record> element). Its descendants (the other
elements) branch out from there. When creating XML documents, it is important to
remember you are creating a tree structure. XML is not about display; it is about data

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

8/20

and its hierarchical organization. The root element <pay_record> is the root element
that appears in a document type declaration if one is included. An XML document
can only contain one root element.

An XML element, as mentioned previously, is made up of a start and an end tag with
content in between. The tags describe or add context to the data contained within,
which is essentially the value of the element:

<street>12 City Road</street>

This example has street as the element and "12 City Road" as the value. This allows
you to mark the value of "12 City Road" so that you can differentiate this data from
other related data. There are also empty elements which contain no data but may
contain attributes. Examples include the XHTML tags
 and <img
src="example.jpg" alt="text alternative"/>. The trailing /> indicates that the XML
processor should not expect a separate end-tag.

An XML element can contain attributes in the start tag, as in the tag above, to
provide extra information about the data. For example, in Listing 1, note the line:

 <salary currency="GBP">32000</salary>

In the salary element, we have the attribute currency. The currency attribute gives
us extra information about the content—in this case, the currency base of the salary,
which is in pounds sterling, GBP. This could markedly change the meaning of the
content, say, if the attribute was set to US dollars (USD). Attributes often provide us
information which is not part of the data. There are some simple syntactical rules to
follow about using attributes.

Attribute values must always be enclosed in quotes, but either single or double
quotes can be used. For example, both of the following lines are valid

<salary currency="GBP">32000</salary>
<salary currency="GBP">32000</salary>

Double quotes are the most common, but sometimes (if the attribute value itself
contains quotes), it is necessary to use single quotes, like in this example

 <firstName alias='"Jonners"'>John</firstName>

There is always a debate over whether data should be stored in child elements or in
attributes. For instance, in the <name> element in Listing 1, if we also wanted to
indicate the sex of the employee, we could use either an attribute or a child element
as in:

<name>
 <firstName>John</firstName>
 <lastName>Barlow</lastName>

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

9/20

 <sex>Male</sex>
</name>

<name sex="Male">
 <firstName>John</firstName>
 <lastName>Barlow</lastName>
</name>

Both methods are acceptable and valid XML syntax. But which is the more
acceptable? There are no specific rules governing this, so a lot will depend on the
actual application being developed. A general rule of thumb to use is ‘if it feels like
data, then use elements’. In other words, use elements to describe data. If the
attribute value is really part of the data you’re describing in your XML document, then
you should be using elements. However, there are always exceptions to any rule, but
just don’t end up with something like this

<name sex="Male" birthdate="27/5/1960" eyeColor="Blue" hairColor="Brown"
middleInitial="F">
 <firstName>John</firstName>
 <lastName>Barlow</lastName>
</name>

Now a couple of last points about elements (or markup tags). XML does not limit you
to a set library of tags. When marking up documents in XML, you can choose the tag
name that best describes the contents of the element. For example, in the address
element of Listing 1, I’ve used the <zip> tag to indicate the postal area code as in:

<zip>M70 2PP</zip>

However, I am free to use something else, such as

<post_code>M70 2PP</post_code>

XML markup tags are case sensitive. This means that XML distinguishes between
upper case and lower case characters in the tags. Thus, the following tags are all
different:

<name>
<Name>
<naMe>

You must be careful and consistent because something like the example that follows
would lead to an invalid XML document as the opening and closing tags don’t match.

<name>
 :
</Name>

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

10/20

‘What are the naming rules for tags’? XML element names can contain letters, digits
and other characters, but names cannot start with a punctuation symbol or a digit.
Names cannot contain a space since XML would then be confused over whether you
actually have a space in the name or are defining an attribute. XML elements cannot
start with the letters ‘XML’.

XML content can consist of any data at all, including binary data. As long as it
doesn’t violate any rules that would then confuse the data with the metadata (or
markup tags).

It is important to remember that XHTML tags are always lower case, so that
 is
correct and
 is not acceptable in either XHTML or XML.

XML comments

Sometimes you want to place comments inside your XML document that are only for
the human readers and are not to be processed or passed on by any application
reading the XML document. Comments can be added to your XML document as
follows:

<!-- XML example of a comment -->

The above example shows the syntax of comments. In between <!-- and -->, you
can write any comment you want. Comments can be placed between markups
anywhere in your document and they are ignored by any application processing your
document.

Well-formed and valid XML

Well-formedness is a fundamental requirement of all XML documents. A well-formed
XML document is one that has been constructed according to the syntax rules we
have been discussing:

• All XML elements must be contained with matched start and end tags.
• XML tag names are case sensitive.
• XML elements must be correctly nested; interleaving is not allowed.
• All XML documents must have a single root element.
• Attribute values must always be within a start tag or an empty tag.

These brief definitions are based on the standard, which goes into considerably
more detail, but these are sufficient for the moment

A valid XML document is a different matter. A well-formed document may not
necessarily be valid, because there is nothing to validate it against. For instance, the
XML document in Listing 1 is well-formed but not valid. If we used this in some
payroll processing application, the use of the <salary> tag may be invalid because
the payroll processing package does not accept attributes such as currency that we
have used. Thus, although the document is well-formed according to all the syntax

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

11/20

rules of XML, it’s not valid for the applications. A valid XML document must contain a
proper Document Type Declaration with information about the DTD. And if all the
constraints expressed in the DTD are satisfied, then the XML document is valid.
Again, we will discuss DTDs and validity later.

Parsing XML

Before we can use any XML document that we create in an application, the XML
document needs to be parsed. Parsing an XML document is a process of reading the
XML document by software and building up a computer-based representation of the
document (the computer equivalent of the tree-structured model shown in Figure 1)
and checking that the document is well-formed, (conforms to all the syntax rules) and
is valid if there is an associated DTD. If the XML document passes all these checks,
then it has been parsed and is ready for processing or manipulation.

All XML applications contain an XML parser to parse XML documents before they
are used to check that they are in fact well-formed or valid. Now we don’t have an
XML application ready to use the pay_record we created in Listing 1, but we could
obtain just an XML parser to check the well-formedness of the document. There are
a number of XML parsers both commercial and free, but most modern browsers—
Opera, Firefox, Chrome, Safari and IE—have an XML parser built in. Be aware that
these are all different and may render your XML differently.

Copy the code from Listing 1 above and paste it into a document called
pay_record.xml (all XML files have the extension xml). This should load in your
chosen browser and display the XML file or an error message if there is a problem.

 <?xml version="1.0" ?>
- <pay_record>

 <employeeNum>125-34</employeeNum>
- <name>

 <firstName>John</firstName>
 <lastName>Barlow</lastName>

 </name>
- <address>

 <street>12 City Road</street>
 <city>Manchester</city>
 <state>England</state>
 <zip>M70 2PP</zip>

 </address>
 <status>Full Time</status>
- <position>

 <title>Tool Designer</title>
 <description> Designs custom tools for Manufacturing </description>
- <workdays>

 <day>Monday</day>
 <day>Wednesday</day>
 <day>Friday</day>

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

12/20

 </workdays>
 </position>
 <salary currency="GBP">32000</salary>
 <married />

 </pay_record>

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

13/20

Listing 3: Output from browser of pay_record.xml

Listing 3 shows the output from the Firefox browser; your display may differ
according to your choice of browser. We will see later some problems that arise
trying to make XML and XHTML files cross-browser compliant.

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

14/20

If you have an invalid XML document, you will get an error message indicating
approximately where the problem is. For example, change the line </name> to
</Name> and see what happens. This is the display in Firefox. Other browsers will
be similar:

The XML page cannot be displayed
Cannot view XML input using XSL style sheet. Please correct the error
and then click the Refresh button, or try again later.
__

End tag 'Name' does not match the start tag 'name'.
Error processing resource
'file:///C:/Users/Osama A. Morad/Desktop/pay_record.xml'. Line
8, Column 9:

 </Name>
-----^

A similar problem can occur if you use a word processor to compose the file. The
word processor will use typographer’s inverted commas, ‘like this’, and in Firefox this
will result in a response like:

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

15/20

The display in other browsers will differ and may not be so helpful.

XML namespaces

Before we continue with another example, we should discuss the use of
namespaces in XML. Since element names in XML are not fixed, a name conflict will
occur when two different documents use the same names describing two different
types of elements, as in the example that follows.

The following XML document carries information about fruit in a table:

<table>
 <tr>
 <td>Pears</td>
 <td>Peaches</td>
 </tr>
</table>

This XML document also carries information about a table (using a piece of
furniture):

<table>
 <name>Walnut Table</name>
 <width>100</width>
 <length>200</length>
</table>

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

16/20

If for some reason these two XML documents were combined together, there would
be an element name conflict because both documents contain a <table> element
with different content and definition. We could solve these problems by the use of a
prefix on the elements in each of the documents:

This XML document carries fruit information in a table:

<h:table>
 <h:tr>
 <h:td>Pears</h:td>
 <h:td>Peaches</h:td>
 </h:tr>
</h:table>

This XML document carries information about a piece of furniture (in a table):

<f:table>
 <f:name>Walnut Table</f:name>
 <f:width>100</f:width>
 <f:length>200</f:length>
</f:table>

Now the element name conflict is gone because the two documents use a different
name for their <table> element (<h:table> and <f:table>). By using a prefix, we
have created two different types of <table> elements. Now an XML namespace is an
extension of this concept using a URI (Uniform Resource Identifier).

The fruit table example:

<h:table xmlns:h="http://www.w3.org/TR/html4/">
 <h:tr>
 <h:td>Pears</h:td>
 <h:td>Peaches</h:td>
 </h:tr>
</h:table>

... and the furniture table example:

<f:table xmlns:f="http://www.kit.com/furniture">
 <f:name>Walnut Coffee Table</f:name>
 <f:width>100</f:width>
 <f:length>200</f:length>
</f:table>

Instead of using only prefixes, an xmlns attribute has been added to the <table> tag
to give the element prefix a qualified name associated with a namespace.

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

17/20

The namespace attribute is placed in the start tag of an element and has the
following syntax:

xmlns:namespace-prefix="namespace"

In the examples above, the namespace itself is defined using an Internet address,
such as:

xmlns:f="http://www.ohecampus.com/furniture"

The W3C namespace specification states that the namespace itself should be a URI.
When a namespace is defined in the start tag of an element, all child elements with
the same prefix are associated with the same namespace. The address used to
identify the namespace is not used by the parser to look up information. The only
purpose is to give the namespace a unique name. The Web page specified by the
URI does not even need to exist.

However, sometimes organizations may use the namespace as a pointer to a real
Web page containing information about the namespace (e.g., http://www.w3.org/TR/
html4/), but this is not very helpful as the parser will not look up the webpage. The
URI is strictly used to define a prefix.

A URI is a string of characters which identifies an Internet Resource. The most
common URI is the Uniform Resource Locator (URL), which identifies an Internet
domain address. There is another form of URI, but in our examples, we will only use
URLs. Since our furniture example above uses an Internet address to identify its
namespace, we can be sure that the namespace is unique.

Defining a default namespace for an element saves us from using prefixes in all the
child elements. It has the following syntax (note that no namespace prefix is used):

<element xmlns="namespace">

The two examples above now become the following when using default
namespaces:

<table xmlns="http://www.w3.org/TR/html4/">
 <tr>
 <td>Pears</td>
 <td>Peaches</td>
 </tr>
</table>

<table xmlns="http://www.w3schools.com/furniture">
 <name>Walnut Table</name>
 <width>100</width>
 <length>200</length>
</table>

http://www.w3.org/TR/html4/
http://www.w3.org/TR/html4/

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

18/20

Editing XML documents

Creating XML documents is easy, and can generally be done with something as
simple as Windows Notepad or gedit.

There are several XML editors available, some free and some commercial, such as
Cooktop (free), Altova XMLSpy (30-day trial available) or Stylus Studio, but these are
generally more complicated than needed here.

The best XML editors are, in my opinion, Notepad++ for Windows or Vim, which is
included in Linux/Mac operating system (OS); but if you prefer an Integrated
Development Environment (IDE), then XML Notepad (free) from Microsoft—simple
yet feature rich—is the best choice. Serna Free is a cross-OS WYSIWYG editor for
windows, Linux and Mac OS and is an open-source free version of the Serna editor.

I recommend that you avoid using Office products or HTML editors that are not
designed for XML development as they may introduce non-printing characters that
aren’t compatible with the parser.

XHTML versus HTML5

Finally, a brief note about using HTML: The current standard is HTML5; the earlier
version comes in two varieties; HTML 4 and XHTML, the latter which is designed to
work with XML and differs from HTML 4 in that it is case sensitive; all tags are in
lower case and there are a few tags which are handled differently. As we move to
HTML5, there is as yet no corresponding version of XHTML although there are
several proposals. The most important of these proposals is polyglot HTML, which is
designed to be delivered either as HTML5 or XHTML.

In this module, we will use both XHTML and HTML5, but to be compatible with XML,
all HTML tags must be in lower case and must be closed.

Note that while the tags for (X)HTML must be lower case, the tags that you will
create for XML may be upper or mixed case, but should always be consistent.
<Director> Smith </Director> is valid, but <Director> Smith </director> is not.

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

19/20

References

Cauldwell, P. et al. (2001) Professional XML Web services. Birmingham, UK: Wrox
Press Ltd.

Other reading

HTML unleashed. The emergence of XML: introduction
http://webreference.com/dlab/books/html/38-0.html

Getting started with XML: a manual and workshop
http://www.infomotions.com/musings/getting-started/getting-started.html

W3Schools: XML tutorials
http://www.w3schools.com/xml/default.asp

Understanding XML
http://msdn.microsoft.com/en-us/library/aa468558.aspx

Polyglot HTML: HTML-compatible XHTML documents
http://dev.w3.org/html5/html-xhtml-author-guide/

Specifications

XML 1.0
http://www.w3.org/TR/2008/REC-xml-20081126/

XML 1.0: an annotated version
http://www.xml.com/axml/testaxml.htm

XML 1.1 for information only
http://www.w3c.org/TR/2004/REC-xml11-20040204/

XHTML 1.0
http://www.w3.org/TR/xhtml1/

Polyglot HTML
http://dev.w3.org/html5/html-xhtml-author-guide/

Article sites

IBM Developer Works (lots of articles/tutorials)
http://www-106.ibm.com/developerworks/xml/

Microsoft MSXML
http://msdn.microsoft.com/en-gb/data/bb190600.aspx

http://webreference.com/dlab/books/html/38-0.html
http://www.infomotions.com/musings/getting-started/getting-started.html
http://www.w3schools.com/xml/default.asp
http://msdn.microsoft.com/en-us/library/aa468558.aspx
http://dev.w3.org/html5/html-xhtml-author-guide/
http://www.w3.org/TR/2008/REC-xml-20081126/
http://www.xml.com/axml/testaxml.htm
http://www.w3c.org/TR/2004/REC-xml11-20040204/
http://www.w3.org/TR/xhtml1/
http://dev.w3.org/html5/html-xhtml-author-guide/
http://www-106.ibm.com/developerworks/xml/
http://msdn.microsoft.com/en-gb/data/bb190600.aspx

XML and Web Applications
Copyright - Laureate Online Education © All rights reserved, 2000–2013.
The module, in all its parts—Syllabus, guidelines, Lecture Notes, Discussion Questions, technical
notes, images and any additional material—is copyrighted by Laureate Online Education B.V.
Last update: 07 March 2013

20/20

Introduction to tree-based XML programming guide for Cocoa Apple
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/NSXML
_Concepts/NSXML.html

Tools

XML Notepad
http://www.microsoft.com/en-us/download/details.aspx?id=7973

Notepad++
http://notepad-plus-plus.org/

Serna Free
http://sourceforge.net/projects/sernafree.mirror/

Other online resources

XML description
http://en.wikipedia.org/wiki/XML

XHTML description
https://en.wikipedia.org/wiki/XHTML

Polyglot markup description
https://en.wikipedia.org/wiki/Polyglot_markup

Web service protocols
http://en.wikipedia.org/wiki/List_of_web_service_protocols

Description of Web services architecture
http://en.wikipedia.org/wiki/Web_service
http://www.w3.org/TR/ws-arch/

XML home page
http://www.w3.org/XML/

XML tutorial
http://www.w3schools.com/xml/default.asp

Web services home
http://www.w3.org/2002/ws/
Web services tutorial
http://www.w3schools.com/webservices/default.asp

Note: Wikipedia is not an acceptable academic reference, but it is a good place to
start looking. Then you can search further and find more reliable sources.

https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/NSXML_Concepts/NSXML.html
https://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/NSXML_Concepts/NSXML.html
http://www.microsoft.com/en-us/download/details.aspx?id=7973
http://notepad-plus-plus.org/
http://sourceforge.net/projects/sernafree.mirror/
http://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XHTML
https://en.wikipedia.org/wiki/Polyglot_markup
http://en.wikipedia.org/wiki/List_of_web_service_protocols
http://en.wikipedia.org/wiki/Web_service
http://www.w3.org/TR/ws-arch/
http://www.w3.org/XML/
http://www.w3schools.com/xml/default.asp
http://www.w3.org/2002/ws/
http://www.w3schools.com/webservices/default.asp

	Introduction to XML, services and applications
	Markup versus content
	An example
	Listing 1: XML payroll record sample
	Listing 2: Payroll record without markup

	XML document structure
	The XML declaration
	The Document Type Declaration
	The XML document body

	XML comments
	Well-formed and valid XML
	Parsing XML
	The XML page cannot be displayed

	XML namespaces
	Editing XML documents
	Other reading

