Homework #5

(due Wednesday, February 15)

- 1. Larsen and Marx, Problem 5.5.2, p. 323.
- 2. Larsen and Marx, Problem 5.5.6, p. 323. (Hint: to compute the mean and variance of θ , make the substitution $x = y/\theta$ and use the fact that $\Gamma(m) = \int_0^\infty x^{m-1} e^{-x} dx = (m-1)!$ for any positive integer m.)
- 3. Larsen and Marx, Problem 5.7.2, p. 333.
- 4. Larsen and Marx, Problem 5.7.4, part (b), p. 574. (Hint: use Markov's Inequality.)
- 5. Suppose X_1, X_2, \ldots is a sequence of i.i.d. random variables having the Poisson distribution with mean λ . Let $\hat{\lambda}_n = X_n$.
 - (a) Is $\hat{\lambda}_n$ an unbiased estimator of λ ? Explain your answer.
 - (b) Is λ_n a consistent estimator of λ ? Explain your answer.
- 6. Suppose X_1, X_2, \ldots is a sequence of i.i.d. random variables having a normal distribution with mean μ and variance σ^2 . Let

$$\hat{\mu}_n = \frac{X_1 + \dots + X_{\lfloor \sqrt{n} \rfloor}}{\lfloor \sqrt{n} \rfloor},$$

where $|\sqrt{n}|$ denotes the largest integer less than or equal to \sqrt{n} .

- (a) Is $\hat{\mu}_n$ an unbiased estimator of μ ? Explain your answer.
- (b) Is $\hat{\mu}_n$ an efficient estimator of μ ? Explain your answer.
- (c) Is $\hat{\mu}_n$ a consistent estimator of μ ? Explain your answer.
- 7. Suppose X_1, X_2, \ldots is a sequence of i.i.d. random variables with $E[X_i] = \theta$ and $Var(X_i) = \sigma_1^2 < \infty$. Suppose also that Y_1, Y_2, \ldots is a sequence of i.i.d. random variables, independent of X_1, X_2, \ldots , with $E[Y_i] = \mu$ and $Var(Y_i) = \sigma_2^2 < \infty$. Suppose $(\alpha_n)_{n=1}^{\infty}$ is a sequence of numbers such that $0 < \alpha_n < 1$ for all n and

$$\lim_{n \to \infty} \alpha_n = 1.$$

Let

$$\hat{\theta}_n = \alpha_n \left(\frac{X_1 + \dots + X_n}{n} \right) + (1 - \alpha_n) \left(\frac{Y_1 + \dots + Y_n}{n} \right).$$

Show that $\hat{\theta}_n$ is a consistent estimator of θ . (Hint: compute the mean squared error of $\hat{\theta}_n$ and use the result of Problem 4.)

Problems 8, 9, and 10 pertain to asymptotic properties of maximum likelihood estimators, a topic which is not covered in Larsen and Marx. If X_1, \ldots, X_n is a random sample from the pdf $f_X(x;\theta)$, which satisfies certain smoothness conditions, then the maximum likelihood estimator $\hat{\theta}$ has approximately a normal distribution with mean θ and asymptotic variance $1/[nI(\theta)]$, where

$$I(\theta) = E\left[\left(\frac{\partial}{\partial\theta}\log f_X(X;\theta)\right)^2\right] = -E\left[\frac{\partial^2}{\partial\theta^2}\log f_X(X;\theta)\right].$$

An approximate $100(1 - \alpha)$ percent confidence interval for θ is given by

$$\left(\hat{\theta} - z_{\alpha/2}\sqrt{\frac{1}{nI(\hat{\theta})}}, \ \hat{\theta} + z_{\alpha/2}\sqrt{\frac{1}{nI(\hat{\theta})}}\right).$$

The same results hold in the discrete case with $p_X(k;\theta)$ in place of $f_X(x;\theta)$. More details can be found in sections 8.5.2 and 8.5.3 of Rice, *Mathematical Statistics and Data Analysis*, which is on reserve in the library.

- 8. Between 1951 and 2000, there were 295 hurricanes in the Atlantic Ocean. Assume that the numbers of hurricanes in different years can be accurately modeled as i.i.d. random variables having a Poisson distribution with mean λ . Find a 90 percent confidence interval for λ .
- 9. Let X_1, \ldots, X_n be a random sample from the pdf $f_X(x; \theta) = (\theta + 1)x^{\theta}$ for 0 < x < 1, and $f_X(x; \theta) = 0$ otherwise, where $\theta > -1$. Recall that in Problem 8 of Homework 2, you found that the MLE for θ is given by

$$\hat{\theta} = -\left(1 + \frac{n}{\sum_{i=1}^{n} \log X_i}\right).$$

Find the asymptotic variance of $\hat{\theta}$.

- 10. Let X_1, \ldots, X_n be i.i.d. random variables having a geometric distribution with parameter $p \in [0, 1]$, which means that $P(X_i = k) = (1 p)^{k-1}p$ for $k = 1, 2, \ldots$ and $E[X_i] = 1/p$.
 - (a) Find the maximum likelihood estimator of p.
 - (b) Find the asymptotic variance of the maximum likelihood estimator.
 - (c) If n = 100 and you observe the following data:

Frequency
60
21
12
4
3

(meaning that 60 of the random variables X_1, \ldots, X_{100} equal 1, and so on), find a 95 percent confidence interval for p.