# **EXPERIMENT THREE DC CIRCUITS**

# EQUIPMENT NEEDED: 1) DC Power Supply

- 2) DMM
- 3) Resistors
- 4) ELVIS

## **THEORY**

## Kirchhoff's Laws:

Kirchhoff's Voltage Law: The algebraic sum of the voltages around any closed path is zero.

$$\sum_{i=1}^{N} v_i = 0 (3.1)$$

Kirchhoff's Current Law: The algebraic sum of the currents at any node is zero.

$$\sum_{i=1}^{N} i_i = 0 (3.2)$$

#### **Series Circuits:**

In a series circuit the current is the same through all the elements.



Figure 3. 1

The total series resistance  $R_S$  is given by

$$R_S = R_1 + R_2 + \dots + R_{N-1} + R_N \tag{3.3}$$

and

$$V_{S} = IR_{S} \tag{3.4}$$

The Kirchhoff's voltage law indicates that:

$$V_S = V_1 + V_2 + \dots + V_{N-1} + V_N \tag{3.5}$$

The voltages across resistors can be obtained by multiplying the current by the corresponding resistors.

$$V_{1} = IR_{1}$$

$$V_{2} = IR_{2}$$

$$\vdots$$

$$V_{N-1} = IR_{N-1}$$

$$V_{N} = IR_{N}$$

The last expressions of equation 3.6 are known as voltage division.

## Parallel Circuits:

In a parallel circuit the voltage is the same across all the elements.



Figure 3. 2

The total parallel resistance, Rp is given by

$$\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_{N-1}} + \frac{1}{R_N}$$
 (3.7)

and

$$V_P = I_P R_P \tag{3.8}$$

Kirchhoff's current law states:

$$I_P = I_1 + I_2 + \dots + I_{N-1} + I_N \tag{3.9}$$

The current through the branch resistors can be obtained by dividing the terminal voltage  $V_P$  by the corresponding branch resistance, R. therefore:

$$I_{1} = \frac{V_{P}}{R_{1}}$$

$$I_{2} = \frac{V_{P}}{R_{2}}$$

$$\vdots$$

$$I_{N-1} = \frac{V_{P}}{R_{N-1}}$$

$$I_{N} = \frac{V_{P}}{R_{N}}$$

The last expressions of equation 3.10 are known as current division.

The reciprocal of resistance is known as conductance. It is expressed in the following equations:

$$G = \frac{1}{R} \tag{3.11}$$

and

$$G_P = \frac{1}{R_P} \tag{3.12}$$

This expression can be used to simplify equations 3.12 as shown below.

$$I_{1} = G_{1}V_{P}$$

$$I_{2} = G_{2}V_{P}$$

$$\vdots$$

$$I_{N-1} = G_{N-1}V_{P}$$

$$I_{N} = G_{N}V_{P}$$

where

$$G_P = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_{N-1}} + \frac{1}{R_N}$$
 (3.14)

If only two resistors make up the network, as shown next



Figure 3.3

then the current in branches 1 and 2 can be calculated as follows:

$$I_{1} = \left(\frac{G_{1}}{G_{P}}\right) I_{P}$$

$$(3.15)$$

$$G_{1} = \frac{1}{R_{1}}$$

$$(3.16)$$

$$and$$

$$G_{P} = \frac{1}{R_{1}} + \frac{1}{R_{2}} \rightarrow G_{P} = \frac{R_{1} + R_{2}}{R_{1}R_{2}}$$

$$\therefore I_{1} = \left(\frac{1}{R_{1}}\right) \left(\frac{R_{1}R_{2}}{R_{1} + R_{2}}\right) I_{P} \rightarrow I_{1} = \left(\frac{R_{2}}{R_{1} + R_{2}}\right) I_{P}$$

$$(3.18)$$

In a similar fashion it can be shown that

$$I_2 = \left(\frac{R_1}{R_1 + R_2}\right) I_P \tag{3.19}$$

(Note how the current in one branch depends on the resistance in the opposite branch)

But, if the network consists of more than two resistors - say four



Figure 3.4

Then the calculation or branch currents using individual resistance becomes complex as demonstrated next, e.g.,

$$I_{3} = \left(\frac{R_{p}}{R_{3}}\right)I_{p}$$

$$\frac{1}{R_{p}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{2}} + \frac{1}{R_{4}} \rightarrow \frac{1}{R_{p}} = \frac{R_{2}R_{3}R_{4} + R_{1}R_{3}R_{4} + R_{1}R_{2}R_{4} + R_{1}R_{2}R_{3}}{R_{1}R_{2}R_{2}R_{4}}$$
(3.21)

so that

$$I_{3} = \left(\frac{1}{R_{3}}\right) \left(\frac{R_{1}R_{2}R_{3}R_{4}}{R_{2}R_{3}R_{4} + R_{1}R_{2}R_{4} + R_{1}R_{2}R_{3}}\right) I_{P}$$
(3.22)

and

$$I_{3} = \left(\frac{R_{1}R_{2}R_{4}}{R_{2}R_{3}R_{4} + R_{1}R_{3}R_{4} + R_{1}R_{2}R_{4} + R_{1}R_{2}R_{3}}\right)I_{P}$$
(3.23)

By using conductances, the above is simplified to

$$I_{3} = \left(\frac{\frac{1}{R_{3}}}{\frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}} + \frac{1}{R_{4}}}\right) I_{P}$$
(3.24)

and is easily accomplished with a hand calculator.

As the above demonstrates, when using current division, always use conductances and avoid using resistances in the calculation for all parallel networks with more than two resistors.

#### Series - Parallel Circuits

The analysis of series -parallel circuits is based on what has already been discussed. The solution of a series-parallel circuit with one single source usually requires the computation of total resistance, application of Ohm's law, Kirchhoff's voltage law, Kirchhoff's current law, voltage and current divider rules.

#### **Preliminary Calculations:**

Be sure to show all necessary calculations.

- I. The resistors used in this lab all have 5% tolerances. This is denoted by the gold band. Calculate the minimum and maximum values for resistances with nominal values of  $1k\Omega$  and  $2.7k\Omega$ . Enter the values in Table 3.1.
- 2. Assume that the two resistors of problem 1 are used in the circuit of Figure 3.5. Calculate  $v_1$ ,  $v_2$ , and I when  $R_1$  and  $R_2$  take on their minimum and maximum values and enter in Table 3.2.



Figure 3.5

- 3. From your calculations in 2, record the maximum and the minimum possible values of I,  $v_1$ , and  $v_2$  that you should see in the circuit in Table 3.3. Also, calculate and record the value of these variables when  $R_1$  and  $R_2$  are at the nominal values. What is the maximum % error in each of the variables possible due to the resistor tolerances?
- 4. For the circuit of Figure 3.6 calculate the resistance between nodes:
  - a. a and b (R<sub>a-b</sub>)
  - b. a and c (R<sub>a-c</sub>)
  - c. c and d (R<sub>c-d</sub>)

Enter your results in Table 3.4

Hint: Part c cannot immediately be reduced using series and parallel combinations.



Figure 3.6

5. Use voltage division to calculate  $V_1$  and  $V_2$  for the circuit in Figure 3.7. Enter your results in Table 3.5.



Figure 3.7

6. For the circuit in Figure 3.8, if R = 1k ohm, calculate I. Use current division to calculate  $I_R$ . Enter your results in Table 3.6. Repeat for R = 2.7k and 3.3k ohms.



Figure 3.8

7. For the circuit in Figure 3.9, calculate each of the variables listed in Table 3.7.



Figure 3.9

## **Procedure**

- I. Place a wire between the two measuring terminals of the ohmmeter and adjust the measurement reading to zero ohms. Obtain a  $1k\Omega$  and  $2.7k\Omega$  resistor and measure their values with the ohmmeter. What is the % error as compared to their nominal values? Enter your results in Table 3.1.
- 2. Construct the circuit in Figure 3.5. Measure  $V_1$  and  $V_2$  using the DMM only. Calculate I from your measurements. What is the % error as compared to their nominal values? Enter your results in Table 3.3.
- 3. Construct the circuit of Figure 3.6. Use an ohmmeter to measure the resistances listed in Table 3.4. Calculate the % error.
- 4. Construct the circuit of Figure 3.7. Measure  $V_1$  and  $V_2$  using the DMM only. Calculate the % error. Enter your results in Table 3.5.
- 5. Construct the circuit of Figure 3.8. Find I and I<sub>R</sub> for R =  $1k\Omega$ , 2.7  $k\Omega$ , and 3.3  $k\Omega$  by measuring the appropriate voltages using the DMM only and applying Ohm's Law. Enter your results in Table 3.6. Note that I is approximately constant. Why?
- 6. Construct the circuit of Figure 3.9. Using the DMM, measure each of the variables listed in Table 3.7, and calculate the % error for each. Verify that KVL holds for each of the 3 loops in the circuit. Verify that KCL holds at each node. What can be said about I<sub>2</sub>+ I<sub>3</sub> and I<sub>1</sub>?

Table 3.1

| Rnominal | Rmin | Rmax | Rmeas | % error |
|----------|------|------|-------|---------|
| 1kΩ      |      |      |       |         |
| 2.7kΩ    |      |      |       |         |

# Table 3.2

|       | R <sub>1</sub> ,min  | R <sub>1</sub> , max | R <sub>1</sub> , min | R <sub>1</sub> , max |
|-------|----------------------|----------------------|----------------------|----------------------|
|       | R <sub>2</sub> , min | R <sub>2</sub> , min | R <sub>2</sub> , max | R <sub>2</sub> ,max  |
| 1     |                      |                      |                      |                      |
| $V_1$ |                      |                      |                      |                      |
| $V_2$ |                      |                      |                      |                      |

## Table 3.3

|       |     |     |     | 0/    |      | 0/      |
|-------|-----|-----|-----|-------|------|---------|
|       | max | min | nom | max % | meas | % error |
|       |     |     |     | error |      |         |
| $V_1$ |     |     |     |       |      |         |
| $V_2$ |     |     |     |       |      |         |
| I     |     |     |     |       |      |         |

## Table 3.4

| Resistance      | Calculated | Measured | % error |
|-----------------|------------|----------|---------|
| R <sub>ab</sub> |            |          |         |
| R <sub>ac</sub> |            |          |         |
| R <sub>cd</sub> |            |          |         |

Table 3.5

|       | Calculated | Measured | % error |
|-------|------------|----------|---------|
| $V_1$ |            |          |         |
| $V_2$ |            |          |         |

Table 3.6

| R     | I, calc | I <sub>R</sub> , calc | I, meas | I <sub>R</sub> , meas |
|-------|---------|-----------------------|---------|-----------------------|
| 1kΩ   |         |                       |         |                       |
| 2.7kΩ |         |                       |         |                       |
| 3.3kΩ |         |                       |         |                       |

Table 3.7

| PARAMETER | CALCULATED | MEASURED | % ERR |
|-----------|------------|----------|-------|
| V1        |            |          |       |
| V2        |            |          |       |
| V3        |            |          |       |
| V4        |            |          |       |
| V5        |            |          |       |
| I1        |            |          |       |
| 12        |            |          |       |
| 13        |            |          |       |
| 14        |            |          |       |
| 15        |            |          |       |