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This paper seeks to offer insight into cross training strategies that could be effective in aiding in
alleviating the nurse shortage issue and its potential to negatively impact on patient safety and mortality.
We develop optimization models to evaluate the benefits of cross-training, in particular chaining
practices, on nurse workforce planning under stochastic demand, and determine the optimal allocation
of both regular and cross-trained staff at a minimum cost. We demonstrate the benefits of cross-training
in terms of a reduction in the total number of nurses required to satisfy demand across multiple
departments as well as from an economic (i.e. overall cost savings) perspective, while simultaneously
meeting the hospitals service and quality of care requirements. In particular, the results indicate that
cross-training strategies could help with optimal utilization of constrained nursing resources and thereby
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limit the negative implications of the growing nurse shortage crisis.
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1. Introduction

The United States is facing a severe shortage of nurses due to
supply side issues. It is projected that by 2020, this number will be
approximately 808,000 in terms of registered nurses (Buerhaus et al.
2009). This issue has resulted in patient safety concerns and affected
the hospital staff's ability to detect complications in patients, poten-
tially leading to increased patient death rates (Aiken et al, 2002;
Stanton, 2004). Research has shown that hospitals with higher nurse
to patient ratios have better outcomes in terms of quality of care,
patient safety, mortality, etc. (Aiken et al., 2010; Needleman et al.,
2006; Stone et al,, 2007). Some states have even mandated ratios,
which vary based on the hospital department (IHSP, 2001). While
there is some evidence to support enforcing specific nurse to patient
ratios (Aiken et al, 2010), this is an extreme measure in terms of
controlling the planning and deployment of nursing resources and
may exacerbate the nursing shortage (Paul and MacDonald, 2013). As
well, such a strategy assumes that demand for services and the supply
of nurse resources in a hospital behaves in a linear manner, when in
fact it is very complex and dynamic in nature (Clancy, 2007).

The effective use of available resources is possible through an
accurate estimation of demand at each of these complex units.
However, given the nursing shortages observed across hospitals in
the US (Domagala and Rowles, 2002; Sarudi, 2000; Hacket et al., 1989),
it might not be possible to always have enough supply to meet this
demand. One way to mitigate this issue is via cross-training of nurses
(Grandinetti, 2000; Tzirides et al., 1991; Wheaton, 1996; Snyder and
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Nethersole-Chong, 1999). In this paper, we focus on developing
optimization models to evaluate the benefits of cross-training, in
particular chaining practices (Jordan and Graves, 1995), on nurse
workforce planning within a multi-department setup.

Through the optimization models we evaluate total staffing
across departments, and determine the optimal allocation of
both regular and cross-trained staff at a minimum cost. Further,
we consider practical limitations including constraints on total
available resources as well as minimum quality as a function
of experience levels (worker heterogeneity), demand variability
and patient service levels. Finally, given the limitations of exact
analytical methods in evaluating the benefits of cross-training
policies, we develop an evolutionary optimization based heuristic
that yields time efficient high quality solutions regardless of the
problem size. Realistic examples featuring Emergency and Surgery
Departments demonstrate that when there were no constraints
on the maximum number of nurses, cross-training resulted in a
lower total number of nurses required for achieving departmental
service goals. When such a constraint was imposed, we found that
both departments achieved both higher s ervice levels and overall
cost savings when cross-training was implemented. Our analysis
confirmed that these results hold regardless of the distribution
that described the nursing demand. Further, we were able to
confirm the directional nature of the above policy implications
within a multi-department setup.

2. Literature review

The primary focus of this paper is on evaluating the benefits
of cross-training as it applies to hospital settings, which forms
the motivation for the extant literature discussed below. First, we
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discuss the generic cross-training literature and then present
research specifically related to various hospital departments.

Cross-training is basically a process of determining the skill
patterns of a workforce. The skill pattern can range from an
extreme, wherein all workers are capable of performing all the
tasks involved, to one where each worker is specialized to do only
one task. The first scenario is generally referred to as full cross-
training whereas the second one is a case of no cross-training.
There are also intermediate policies such as chaining (Jordan and
Graves, 1995), wherein each worker could have one or more other
skills, in addition to their normal skill set that he or she would use
for their home department. In this study, we evaluate the benefits
of chaining policies in both a two and multi-department setting.

The popularity of cross-training policies stems from its ability to
provide flexibility to an organization's workforce. However, it has been
shown that this flexibility may be expensive and difficult to maintain
(Hopp and Van Oyen, 2004; Inman et al., 2004). Further, cross-trained
personnel might not be as efficient as a dedicated workforce. For
instance, Karuppan (2006) showed that there is a decrease in the
productivity and quality of output when using cross-training. This
decrease is attributed to cross-trained workers not being able to
exercise or practice their skills as often, and thus causing them to
forget basic skills related to their additional tasks. Similar findings have
been reported by Chakravarthy and Agnihothri (2005), who show that
a slide in the relative efficiency of cross-trained workers when
compared to dedicated staff may negate the benefits of a flexible
cross-trained workforce. However, in a recent study, Easton (2011),
using a two stage stochastic model, presented some new and different
results from a cross-training perspective when compared to the prior
literature. For example, they demonstrate that cross-training often
leads to improved performance when compared to dedicated specia-
lists. In scenarios wherein the cross-trained workforce was less
efficient than dedicated specialists, they found that increased cross-
training resulted in trade-offs between capacity (i.e. workers with the
required skills to meet a specific type of demand) shortages and
workforce size, where work force size represents the total number of
workers irrespective of their skills.

It should be noted that some of the above experiences presented in
the literature that preceded Easton (2011) may not apply in a hospital
setting, as the underlying uncertainty is considerably higher than what
is experienced in manufacturing or other non-hospital environments.
This comparatively smaller uncertainty in non-hospital environments
could also explain reduced opportunities for workers to practice their
additional skills. Further, the experiences in hospitals who have
implemented cross-training policies are similar to the findings pre-
sented in Easton (2011). This is evident from the extant literature on
cross-training policies applied in hospital environments. For instance,
it has been reported that cross-training can improve the quality of
care, often by mitigating the impacts of uncertain patient arrivals and
absenteeism, by reducing the need for temporary staffing while still
maintaining service levels (Inman et al., 2005). In one of the earliest
papers, Tzirides et al. (1991) recommend implementing flex teams
involving related hospital departments in order to handle random
patient census. Wheaton (1996) reports on a successful cross-training
program for nurses in the Neuro-critical care unit of the ICU of a
particular hospital. Similarly, Snyder and Nethersole-Chong (1999)
report on cross-training surgical nurses for the ICU, which not only
reduced overtime in the ICU but also boosted morale across the units.
Grandinetti (2000) studied care teams, which included implementa-
tions of cross-training to, in part, improve staff flexibility. A recent
paper that aimed to address the nursing shortage is that of Wright and
Bretthauer (2010). The authors focus on scheduling flexibility and
efficient use of available nursing resources, which included creating a
pool of cross-trained nurses. Their research showed that coordination
across departments in implementing flexible scheduling could reduce
labor costs as well as overtime and undesirable staff schedules.

However, though there exists literature on the application of
cross-training across different hospital departments as detailed
above, most do not evaluate the impacts or attempt to model or
determine the levels of cross-training. One exception is the paper
by Inman et al. (2005), in which the authors used simulations to
model different cross-training strategies, such as reciprocal pairs
and chaining, to determine the impact on costs resulting from
absenteeism and random patient census. In addition, Gnanlet and
Gilland (2009) developed a two-stage stochastic programming
model to find the optimal level of cross-training and allocation of
beds for a pair of hospital units that face random patient census
and the resulting demand.

In this paper, given uncertain demand, we determine the
optimal allocation of both regular and cross-trained staff to
minimize cost considering practical limitations, including con-
straints on total available resources, while maintaining minimum
quality (worker heterogeneity) and patient service levels. Our
models extend the literature (for example, Campbell, 1999,
Inman et al., 2005) on the effect of demand variability on expected
shortage levels and optimal staff allocation decisions by being
capable of handling various probability distributions in addition to
the normal distribution, as well as incorporating the impacts of
the costs of cross-training and temporary staffing. The motivation
for inclusion of worker heterogeneity in our models, in addition to
its impact on staff costs, is the significant influence it has on
productivity rates when considering cross-training policies, as
these policies have been shown to have a greater benefit when
applied to the best subset of workers (Jordan et al., 2004; Kim and
Nembhard, 2010). Similarly, our models consider service levels in
our analysis as it not only impacts the number of nurses from a
cost and service goals perspective, but also because it has been
shown that return on cross-training declines rapidly as customer
service levels increase (Robbins et al, 2007). Our models, by
considering worker heterogeneity in addition to demand varia-
bility, service levels and resource costs, contributes to the general
worker productivity related cross-training literature (for example,
Brusco and Johns, 1998). Further, the models developed are
capable of studying the impact of cross-training on nurse work-
force planning in both simple two and multi-department environ-
ments. Finally, we develop an evolutionary optimization based
heuristic that yields time efficient high quality solutions regardless
of the problem size.

3. Methodology

The goal of the proposed model is to evaluate staffing policies
for nurses across departments with cross-training. Specifically, we
study the chaining problem for two and multi-department
setups. The simple two department case is equivalent to full
cross-training; however the multi-department setup would be
one wherein the first department has cross-trained nurses for the
second, the second has cross-trained staff for the third and so on,
with the last department in the chain having nurses that are cross-
trained for the department at the start of the chain. The rationale
behind considering this particular chaining arrangement is that
given the complexity of nursing duties within a given department,
cross-training across more than two departments is unlikely. This
is a valid assumption based on our discussions with hospital staff
and evidence available in the extant literature on the disadvan-
tages resulting from excessive cross-training (Inman et al., 2005).
Further, this type of chaining has been demonstrated to be cost
efficient (Inman et al., 2005). Several key aspects of the staffing
problem such as costs, service levels, quality, and constraints on
available staff are considered. Before elaborating on the model, we
present the following notation in Table 1.
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Table 1
Model notation.

Indices

i Department

k Experience level of the nurse (being the lowest or entry level)

r Regular nurse

c Cross-trained nurse

t Temporary nurse

Domains

I Total number of departments

K Total number of experience levels

Parameters

¢’ Cost for a regular nurse in department i

ci¢ Cost for a cross-trained nurses in department i

Ct Cost for a ‘temporary’ nurse ( all departments)

D; Random variable for demand for nursing staff in department i

A Mean demand for nursing staff in department i

Smin Minimum service level required

Qmin Minimum quality level required

ek Relative quality level of nurse with experience level k

&° Relative quality for cross-trained nurses

n;max Maximum number of nurses available in department i

Decision variables

n;" Number of regular nurses in department i

Si Service level in department i

Qi Quality level in department i

ni© Number of cross-trained nurses in department i of experience
level k

ni” Number of regular nurses in department i of experience level k

Nik Total number of nurses in department i of experience level k

n; Total number of nurses in department i

Utility

E(shortage) Total expected shortage of nurses

3.1. Model development

In our model, we consider K levels of experience for regular (i.e.
non-cross-trained) nurses, each with differing salaries/costs as
well as differential impacts on service quality. Staff costs are based
upon the experience level of the nurses in each department, which
is denoted as cfj,, with a premium ¢ > 0 associated with salaries of
cross-trained nurses c§, i.e. ¢ < c§, = cj, +cC. This salary premium
can in part be attributed to the costs of cross-training, as well as an
increase in value to the organization that is reflected in increased
salary, increase risk of loss of cross-trained staff and other
associated costs. Further, when shortages occur in a department,
a cost ¢¢ > c§(Vk) is attributed per unit shortage, either as a
penalty function for reduced patient service or the costs associated
with the temporary nurse staffing to cover the shortage.

The demand for nurse staffing in each department is uncertain
and based upon random patient arrivals. Random demand for
staffing in each department is assumed to be independent. We
denote the random variable for staffing requirements to meet
patient needs in department i as D; with mean ;. Given this
random demand, we determine the number of entry, mid-level
and senior regular (n}) and cross-trained (ng) nurses for each
department, while meeting specified service and quality levels, to
minimize the total expected cost, which includes the staffing costs
related to the number of regular and cross-trained staff as well as
the expected total shortage across departments and the associated
cost of temporary staffing. This is expressed as

K 1
Total cost = { > > mpch+ nfkcfk} +E[shortage]c, 1)
k=1i=1

The first components are linear in the number of nurses for
both regular and cross-trained staff and are straightforward given
available salary data. However, the expected shortage is non-linear

in the staffing levels, the details for which are presented in detail
later in this section.

Within the optimization, we also consider a number of con-
straints for both realistic and/or logical reasons. First, we assume
only nurses with experience beyond entry level (k > 1) are avail-
able for cross-training, as the entry level nurses are still gaining
expertise in their home department. In addition, service levels,
i.e. the ability to meet patient demand with current available
resources, and quality are also significant, if not of utmost
importance in a health care setting. We consider service levels,
in our analysis not only because it impacts the number of nurses
from a cost and hospital goals perspective, but also because it has
been shown that the return on cross-training declines rapidly as
customer service levels increase (Robbins et al., 2007). For a given
department i, we define the expected service level, E[S;], as the
probability that there are sufficient staff, both departmental nurses as
well as available cross-trained nurses from the second department, to
meet the demand; or equivalently, the probability of a shortage of
zero in a given department. To demonstrate this, we develop the
equations for expected service level for two and multi-department
chains respectively. Consider two departments, denoted as i and i—1
in which department i—1 has nurses cross-trained to serve in i and
vice-versa, then the expected service of department i is given as

o
ES]=PDi<n)+ ¥ 1P(Di =n+X_1)PDi 1 <ni_1-X_1) (2)
Xi_1=
where x; and x;_; are counters that implement the various cross-
training combinations possible, based upon the number of cross-
trained staff, that result in full coverage for department i, which
occurs when the sum of shortages and surplus staff in the chain
equal zero. The expected service for department i— 1 can be similarly
determined by reversing i—1 and i in Eq. (2).

For the multi-department case, we begin by developing the
equation where three departments are involved, which we denote
as i, i—1 and i+ 1. In a three department chained cross-training
scenario, i would provide cross-trained staff to department i+1,
i+1 for i—1 and i—1 for i. For three departments, the expected
service level in department i is:

"
E[Si]=PD;<n)+ ¥ PO;=ni+x;_1)

Xi—1=1

xPDi_q1 <mi_1—x_1)+ X PDjy1<Niy1—Xi11)
Xip1=1
n_ c
x| X PDi1=ni_1-nj_+X_1+X1—1)

Xi_1=1

xP(Dj=n;+nf_;—x;_1+1) 3)

As with (2) above, the various combinations of cross-trained staff
resulting in full service for department i are considered, with the
resulting sum of shortage and surplus staff across the chained
departments being zero.

Thus each additional department in the chain adds a term to
the expectation describing how cross-trained staff in that depart-
ment contributes to covering shortages in the target department
via the chain. As with the two and three department cases, the
sum of the shortages and surpluses within the chain equal zero.
This establishes the structure of the algorithm for a departmental
chain of an arbitrary length. Given a department i, we can first
determine the range of shortage or surplus for the i+1 depart-
ment as 1 to n¢,_,, while the range for the i" department's
shortage is restricted by the preceding department's available
cross-trained staff, i.e. 1 to n{_,. Similarly, the remaining depart-
ments within the chain will vary based upon the number of
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cross-trained staff in the departments immediately preceding and
following within the chain. Thus the i"4+1 department's contribu-
tion (i.e. the next department following department i) to depart-
ment i is given as

L
> PDip1<nip1—Xi1)
Xig1=1

n¢
T s 1 PDiv1=MNiy 2 —NG 5 +Xi1+Xi2)
g

Y o1 PDica=ni1—n{_;+Xi_1+Xi_2 —DPD;=ni+nf_; —x;_1+1)

C))

which is applied for each step in the chain from department i—1
back to i+1 to give the expected service level for the i depart-
ment:

iy
E[S]1=PDi<n)+ ¥ PDi=ni+x;_1)PD;_1 <nj_1—Xi_1)

X 1=1

M
+-4+ Y PDjy1<Niy1—Xiy1)

Xip1=1

c
”HZ

> 1P(Di+1 =M =My o +Xip1 +Xig2)
Xip2 =
L
> 1P(Di—1 =M1 =N 1 +Xi_1+Xi_2 = DPDj=m+n{_;—x;_1+1)
Xi1=

(6

Thus Eq. (5) allows us to set a minimum expected service level,
denoted as S, for each department.

We estimate the overall quality level (Q;) in turn, based upon
the number of nurses of differing experience levels in a depart-
ment, as well as whether they are dedicated to a single depart-
ment or have undergone cross-training. The quality of care
provided by a given nurse in a department, based upon experience
level and the type (i.e. regular or cross-trained) is denoted by &&°,
where ¢, represents the quality measure related to experience
level and ¢ differentiates between dedicated and cross-trained
nurses. For experience, we designate a quality of care rating of
1 for nurses with a K level of experience, that is e¢ =1, with
e1 <&y < - <eg=1. For regular nurses, i.e. those dedicated to a
single department, by definition ¢ =1 within the quality of care
rating, with ¢ <1 assigned to nurses that have undergone cross-
training. The overall quality in a department is a proxy for the
staff mix within a given department, and is given by
Qi=YK_, (nl, +ne)e,. Within the optimization, we then set the
minimum quality of care Q,;, < 1. Finally, we may also designate
the maximum number of nurses available to each department,
denoted by njmq, to model issues associated with nursing
shortages common across the U.S.

The resulting optimization model is given as

Minimize Z = kg‘,] %1 njci +ng.c + E[total shortage]c, (6)
=1i=

Subject to

E[Si] = Spin, fori=1,2,..I 7
Qi >Quin, fori=1,2,...1 )

K

Qi= kgl (N +ng - ee fori=1,2,...1 9
Quin<1, fori=1,2,...1 (10)
ng <ny, fori=1,2,...I, k=1,2,..K a1
N <N max, fori=1,2,...1 (12)

K

n = Y ng, fori=1,2,..1 (13)
K=1

nyg = nh4ng, fori=1,2,..1 k=12,..K (14)

n, ng, ni, ny = integer (15)

g1<e<--<eg=1 (16)

The objective function minimizes the total expected cost, which
includes the costs related to the number of regular and cross-
trained staff as well as the expected total shortage across both
departments and the associated cost of temporary staffing.
Constraints (7) and (8) ensure that the expected service and
quality in department i are at least equal to the minimum limits
set by the hospital. Constraints (9) and (10), which are related to
quality, have been discussed earlier. Constraint (11) ensures that
the number of cross-trained nurses in department i is less than or
equal to the total number of nurses. Constraint (12) makes sure
that the total number of nurses in department i is less than or
equal to the maximum available to the department. Constraints
(13) and (14) describe the relationships between the makeup
of nurses for each department in terms of experience and cross-
training skills. Constraint (15) ensures that all nurse staffing
decision variables assume integer values. Constraint (16) related
with quality differentials that exist among nurses of different
experience levels has been discussed above. We next focus on the
derivation of the expected shortage across departments.

3.2. Calculation of expected shortages

We first consider cross-training across two departments, or a
pairing system, in which nurses in each department can be cross-
trained for the other. This may be considered a realistic restriction
as given the complexity of nursing duties within a given depart-
ment, cross-training across more than two departments is con-
sidered unlikely.

In general, the probability of a total shortage ‘s’ across depart-
ments is the product of the shortages in each individual department
that sums to the total ‘s’. For example, a total shortage of one
requires a shortage of one in department i and a shortage of zero in
department i—1. However, given the availability of cross-trained
nurses for each department, the various probabilities that yield a
shortage of zero and one are not independent. To determine the
expected shortage, we first calculate the probability of a shortage in
either of the departments given the demand, as well as the number
of regular and cross-trained nurses. For a two department chain,
again denoting the two departments as i and i— 1, the probability
that a shortage of s occurs in department i can be divided into a
base effect (i.e. without any cross-training) and direct cross-training
effects. For department i, with staff in department i—1 cross-
trained for department i, by combining and simplifying conditions
resulting in a shortage of s we can calculate the probability of a
shortage as (See Appendix A for proof)

P(shortage department i = s) = P(D; = n; +5)

+ X POy <ni_1—Ti_)PDj=nj+s+T;_1)
T =1

—P(Dj=ni+s+T;i_1—1)] 17)

where the first term is based upon home department nursing
resources, while the second term is the result of available cross-
trained nurses in i—1.

We now extend our analysis to multiple departments where
again, as in the previous section, nurses are cross-trained to work
only in a total of two departments including their home depart-
ment. Thus the system being described is a cross-training chain
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as previously discussed. To extend the approach for two depart-
ments given above, we need to consider both the direct and
indirect cross-training effects on a given department. The direct
effects are those in which a department immediately preceding
has cross-trained staff for the department of interest. For example,
department i—1 has staff that are cross-trained for department i.
Direct effects are as determined above for the two
department case.

To complete the analysis, we need to now incorporate indirect
cross-training effects. For example, consider a three department
case, where a third department (denoted as i+1) has no staff
cross-trained for department i but does have cross-trained staff for
department i— 1. Thus, these staff can be used to free up cross-
trained staff in department i—1 that would not be otherwise
available to reduce a shortage in department i. This indirect impact
is given by

i,
P(shortage departmenti=s)= Y P(D;.1<nj,1—Ti,1)
Tiy1=1

n_y
Y PDi_qi=nj_1+Ti_1—nf_;+Ti 1—1)
Ti1=1

(P(D; =n,'+$+ni571 —Ti_1 +1)—P(D,'=ni+s+nf71 —Ti_1))
(18)

Combining these results, the probability of a shortage s in
department i with three departments in a cross-training chain is
given as:

P(shortage departmenti = s) = P(D; = n; +S5)

n_y
+T ) IP(Diq <nj_1—=Ti_DPD; =ni+s+T;_1)—PD; =n;+s+T;_1 —1)]

n¢

it+1
+ X PDiy1<nig1—Tig1)
Tiz1 =1

Ny

. z 1P(Di—1 =1 +Ti 1 —nf_1+Tip1—1)
i-1=

(P(D; =n,»+s+ni21 —Ti_1+1)—P(D; = l’li+5+n1¢71 —Ti 1))
(19

where the first term is the shortage based upon own department
staffing, the second term addresses the direct effect of cross-
trained staff in department i—1 and the last term the indirect
effects of cross-trained staff in department i+ 1 that can substitute
in department i— 1, thus freeing up staff fromi—1 to i.

Using the above shortage probabilities, we can in turn calculate
the expected shortage in an individual department based upon the
number of regular and cross-trained nurses given the mean
demand as

E[total shortage department i] = ozoj P(shortage department i = S)s

s=1

(20

which can be readily estimated numerically. The total shortage
across all departments can then be taken as the sum of the
individual shortages based upon the total and cross-trained staff
in each department:

> < %o: P(shortage in dept. i =5)s ) 21

foralli s=1

E[total shortage] =

The proof of this result is presented in Appendix B for the two
department case, with a similar derivation applicable to the multi-
department case, and verified via Monte Carlo simulations.!
Substituting (21) into the above total cost expression allows the

! Results pertaining to the validation of Eq. (21) using Monte Carlo simulation
are available upon request from the authors.

optimization of the staffing/cross-training problem with the
objective of minimizing total costs.

Note that, although these equations apply to a cross-training
chain, they can be easily extended to include a more general cross-
training, where any and all departments may have staff cross-
trained for an individual department. Under this scenario, direct
effects are given as above for each department that has cross-
trained staff for the department of interest. Then, the indirect
effects are modified to account for staff that is directly cross-
trained to assist in the selected department. Eqs. (17)-(21) can be
extended to account for shortages with more than three depart-
ments similarly to that given for expected services in Eq. (5).

The above model as presented in Sections 3.1 and 3.2 via Egs.
(1)-(21) can be utilized to perform various sensitivity analyses
including studying the effect of quality, cross-training, service
levels, number of nurses, etc. on optimal use of budgetary
resources with one exception, that being incorporating minimum
service and maximum nursing levels constraints in a single setup,
as such a scenario could lead to potential conflict. As can be noted,
the comprehensive cross-training model discussed above is diffi-
cult to solve analytically and heuristics may be warranted. This
forms the focus of the next section.

3.3. Evolutionary algorithm (EV)

Even for small problems, an exact solution methodology for the
model described in Sections 3.1 and 3.2 above may not be a
practical option for determining the optimal workforce mix from a
time to solution perspective. This would be particularly true for
large problems wherein the department size could be in the range
of hundreds. Therefore, we propose the following heuristic opti-
mization approach to handle such problem scenarios. As the
optimization involves a nonlinear, non-smooth problem, we chose
an evolutionary algorithm (EV), as this method has been shown to
produce efficient solutions for nonlinear programming problems
(Costa and Oliveira, 2001; Danish et al., 2006; Srinivas and
Rangaiah, 2007). We specifically utilized and built on the evolu-
tionary algorithm Evolver 5.7 developed by Palisade (2011), which
proceeds as follows:

1. Initialization: The initial population, consisting of points in the
search space, is randomly created.

2. Evaluation: Each organism in the population is evaluated
through the objective (fitness) function discussed earlier as
part of the optimization model and ranked from best to worst.

3. Genetic operators: Selects good organisms and swap their
variables using genetic operators such as ‘crossover’ and
‘mutation’ to produce ‘offspring’. If offspring do not produce a
good result, two more parents are selected.

4, Stopping criterion: These steps (2) and (3) are repeated till the
specified number of generations is reached or population
converges.

The parameter settings for our EV runs are presented in Table 2.
Tables 3-5 compare the results of the EV with solutions from a
complete enumeration algorithm (SA) that yields global optimal
solutions (see Appendix C for details on SA). Specifically, Table 3
presents the problem settings tested. Table 4 shows the SA and EV

Table 2
Evolutionary algorithm parameters.

Population size 50
Trials 20000
Crossover probability 0.5
Mutation probability 0.1
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Table 3
Scenarios run for comparison purposes.

Scenario run settings

Mean demand ER Mean demand OR

Required service (%) Required quality

5 10 50 0.9
5 10 75 0.9
10 5 50 0.9
10 5 75 0.9
5 5 50 0.9
5 5 75 0.9
10 10 50 0.9
10 10 75 0.9
Table 4
Comparison of evolutionary algorithm and complete enumeration (results output - Part 1).
Department 1 Department 2 CT Dept. 1 CT Dept. 2 E[temps]
EV SA EV SA EV SA EV SA EV SA
Entry Mid Senior Entry Mid Senior Entry Mid Senior Entry Mid Senior
0 3 0 0 3 0 6 0 6 6 0 6 0 0 4 4 1.609 1.609
1 3 1 0 5 0 5 1 5 5 1 5 2 2 3 3 1.145 1.145
1 4 1 0 8 0 4 1 4 3 1 3 0 0 5 4 1.652 1.609
2 7 2 0 1 0 2 1 2 2 1 2 3 3 2 2 1.145 1.145
0 6 0 0 3 0 2 0 2 3 1 3 3 0 1 4 1.290 1.290
2 1 2 0 5 0 3 0 3 3 0 3 1 1 2 2 0.925 0.925
3 2 3 0 8 0 5 2 5 6 0 6 0 0 4 4 1.918 1.918
1 8 1 0 10 0 5 2 5 6 0 6 1 1 3 3 1124 1.124
Table 5
Comparison of evolutionary algorithm and complete enumeration (results output - Part 2).
Service level Dept. 1 Service level Dept. 2 Quality level Dept. 1 Quality level Dept. 2 Total cost Run time (min)
EV SA EV SA EV SA EV SA EV SA % Difference  EV SA
0.591 0.591 0.792 0.792 0.90 0.90 0.90 0.90 4150 4150 0.00 15 > 180
0.771 0.771 0.758 0.758 0.90 0.90 0.90 0.90 4217 4198 0.45 15 > 180
0.534 0.580 0.968 0.867 0.90 0.90 0.90 0.90 4236 4186 1.19 15 > 180
0.758 0.758 0.771 0.771 0.90 0.90 0.90 0.90 4272 4234 0.90 15 > 180
0.790 0.599 0.641 0.867 0.90 0.90 0.90 0.90 2922 2910 0.40 15 > 180
0.752 0.752 0.808 0.808 0.90 0.90 0.90 0.90 2982 2944 1.29 15 > 180
0.577 0.577 0.792 0.792 0.90 0.90 0.90 0.90 5492 5423 1.27 15 > 180
0.751 0.751 0.825 0.825 0.90 0.90 0.90 0.90 5540 5509 0.56 15 > 180

outputs from a staff mix perspective i.e. regular and cross-trained
and also shows the expected shortage for each of the scenarios.
Table 5 presents results on total cost and the percentage difference
between the solutions generated by the EV and the global optimal
solutions generated by the SA. Finally, Table 5 also indicates the
approximate gains from a run time perspective when using the EV.

As can be noted from comparison of the SA and EV outputs in
Tables 4 and 5, the evolutionary algorithm is able to generate
accurate solutions within reasonable processing times when
compared to the search algorithm. This is evident from the
percentage difference in total cost results (Table 5), with the
difference being less than 2% for all of the runs. Further, the
department staff mix (regular and cross-trained) and expected
temporary staffing (shortage) results are almost identical when
comparing results from the EV and SA. The similarity is also noted
with the service and quality levels achieved for each of the
departments. These results thus both validate and provide con-
fidence in the efficiency and quality of solution generated by the
evolutionary algorithm.

4. Numeric results

In this section, we first focus on an empirical application of our
algorithms via an illustrative example involving two hospital
departments: the Emergency Department (ED) and the Surgical
Department (OR). Secondly, we perform sensitivity analysis on the
effect of cost parameters on chaining when considering a multi-
department setup.

4.1. Two department hospital example

In Section 3 we developed models to study and utilize the
positive effects of cross-training for both two and multi-
department setups. These models were motivated by the goal of
contributing to the theoretical literature on cross-training, while
still focusing on the primary objective of studying how cross-
training via chaining could help to alleviate the nursing shortage.
As discussed previously in Section 3, as chaining across more than
two departments is unlikely and may actually be counterproductive,
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in this section we focus our analysis on a two department chain. We
do however note that there are reported exceptions wherein nurses
have been trained to operate in multiple units in a hospital environ-
ment (see for example, http://www.stlouischildrens.org/health-care-
professionals/nurses/pediatric-nursing-specialties/float-pool). How-
ever, we would make an important distinction, in that these often
involve subunits within the same department. For example, at the
children's hospital referenced above, the cross-trained units all
provided pediatric intensive care, which involves operational chal-
lenges much different than that of a multi-department setup in
which ER, OR, ICU, etc. are involved.

A number of optimizations were performed with a mix of
variables, including quality and service levels, mean demands as
well as maximum available staffing. For nursing salaries, reported
ranges of salaries by experience level for the two departments, the
ED and OR were used. The reported data included five levels based
upon years of experience: <1 yr; 1-4 yrs; 5-9 yrs; 10-19 yrs and
20 yrs+ (AllNursingSchools, 2011; StudentDoc, 2011). For regular
(non-cross-trained nurses), we considered three levels of experi-
ence, entry, mid-level and senior, each with differing salaries/costs
as well as impacts on service quality. For salaries, we used the
average of the < 1 yr for our entry level category. For both mid and
senior nurses, the middle and final two categories based upon
years of experience were averaged. For cross-trained nurses, a 10%
premium (c°) of the overall average was used for all optimizations,
while temporary costs (c;) were taken as approximately double the
average nursing salaries. The random variable demand for nurses
in each department (D;) was assumed to follow a Poisson distri-
bution, with means of either 5 or 10, denoted as low (L) and
high (H) demand respectively, and applied to each department.
The quality weighting and minimum quality levels were set
such that Q.;; was initially taken as the average weighting of
the three nursing categories, and then varied by + half the
difference between weights. Specifically, e3 =1 as stated earlier,
with e, = 0.9 and &; = 0.8, then the optimizations were run at Q;,
of 0.85, 0.9 and 0.95. For a fixed available pool of staff, the
maximum available number of nurses was taken at levels of 7, 9,
and 11, while the number of cross-trained nurses was allowed to
vary up to the available mid and senior level staff. The minimum
service level, S, was set at 50% or 75%.

The variables service level and maximum number of nurses
were not used in the same optimization due to their potential
conflict. Specifically, we studied two scenarios: one where there
were no constraints on the maximum number of nurses available
to a department and a second where such a constraint was
imposed denoted as scenarios A and B respectively. For both these
scenarios, we first assumed that there was no difference in quality
of service offered by a cross-trained nurse when compared to that
by a dedicated/regular nurse, i.e. ¢ =1 for both regular and cross-
trained nurses. If the maximum number of nurses was not
constrained (scenario A), a minimum service level (Sp,) was
specified. For all of the above, a second set of optimizations was
then performed, with an identical mix of variables but no cross-
training, to evaluate the impact of cross-train across a range of
situations.

4.1.1. Impact of cross-training on staffing

We first evaluated the staffing benefits of cross-training at
various demand scenarios when subject to different quality and
service requirements and constraints on available nursing staff. For
scenario A as defined above, we evaluated the benefits of cross-
training by analyzing the number of total nurses required in both
departments to achieve the minimum service level constraint. For
scenario B, as the maximum number of nurses allowable was

Table 6
Comparative staffing levels.

LH (5,10) H,L (10,5) LL (5,5) H,H (10,10)
Cross-training 16 16 11 22
No Cross-training 18 18 12 24
Table 7
Comparison of service levels (ED).
LH (5,10) H,L (10,5) LL (5,5) H,H (10,10)
Cross-training 0.797 0.580 0.641 0.525
No Cross-training 0.616 0.458 0.616 0.458

constrained, we determined that the service level achieved in each
of the departments was the appropriate metric.

4.1.1.1. Scenario A. Under scenario A, we found that when using
cross-training in the scenarios tested, the total number of nurses
required was less than or equal that without cross-training. Table 6
shows the results for a service level of 75% and the minimum
quality level set at 0.90. As would be expected, higher reductions
in required staffing were observed in at least one of the
departments with higher demand levels. These results in general
validate the strategy of cross-training in optimally using the scarce
nurse resources and thereby partially alleviating the nurse
shortage crisis while maintaining prescribed service levels.

4.1.1.2. Scenario B. Under scenario B, we observed that with cross-
training, the service level achieved in both departments was
generally higher than that in scenarios without cross-training.
This was true for most scenarios with few exceptions. Within the
exceptional cases, the total overall cost savings and total service
level across both departments was higher than that without cross-
training explaining the apparent discrepancy. As above, we
present results for selected scenarios, specifically those that had
quality level set at 0.90 and maximum number of nurses as 9.
Tables 7 and 8 present results for service levels achieved in the ED
and OR respectively at various demand scenarios with 1;;,,x=9
and Qni»=0.90. In general, service level impacts are highest under
a H,L type demand pattern, as the cross-trained nurses in the low
demand unit are more likely to be available to the other
department. Similarly it was observed that the impact of cross-
training on service levels was higher when the constraints
imposed on available nurses was lower, i.e. njmq=7. Thus given
a fixed resource such as the number of nurses within a
department, cross-training can be employed to optimally utilize
such a scarce resource to provide for improved service levels.
These results further validate the use of cross-training to mitigate
the impacts of nursing shortages.

Given the above benefits from a staffing level or service level
perspective, it is unlikely that either would be sufficient without
considering costs. It would be particularly useful to a decision
maker or a health care manager if the above benefits were also
achieved at a reduced cost, with the cost savings providing further
justification for implementing cross-training. The next subsection
therefore focuses on the impact of cross-training on costs and is
able to demonstrate that this strategy is beneficial from a cost
perspective as well.

4.1.2. Impact of cross-training on costs
Overall, costs savings with cross-training ranged for scenario A
ranged from 3.2% to 6.0%, while for scenario B ranged from a low
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Table 8
Comparison of service levels (OR).

Table 10
Impact of cross-training quality on staffing levels.

LH (5,10) HL (10,5) LL(5,5) H,H (10,10) LH (5,10) HL (10,5) LL(5,5) H,H (10,10)
Cross-training 0.867 0.610 0.790 0.525 Cross-training® 16,17,17,18 16,17,17,18 11,11 1112 22,22 22,23
No Cross-training 0.616 0.458 0.616 0.458 No cross-training 18 18 12 24
2 Quality weightings (¢°) of 1, 0.9, 0.8, and 0.7.
Table 9
Percentage cost savings with cross-training.
LH (5,10) H,L (10,5) LL(55) H,H (10,10)
Scenario A 53 5.2 5.4 5.5 "
Scenario B 39 5.3 44 2.9 K
% = LH (5,10)
w1
% &H,L (10,5)
o o - . . < S LL(55)
of 0.7% to 9.2%. The average was similar for both scenarios, being B

4.7% and 4.4%. Thus we see more consistent cost savings under
scenario A, given the flexibility to determine the staffing level
unconstrained by an upper bound. In general, cross-training
savings were higher when demand in one department was low,
with the minimum savings realized when both demands were
high. The added value of cross-training in which at least one of the
two department experience low demand is due to the higher
probability of cross-trained nurses being available under low
demand to assist in the other department. The cost savings as a
percentage over no cross-training for both scenarios are presented
in Table 9. Consistent with the results given in Section 4.1, the
results are presented for a quality level of 0.9, with S,,,;,=75% for
scenario A and n;me=9 for scenario B.

Under scenario A, the results are largely unaffected by Q;; and
see a modest increase when S,,,;, is raised from 50% to 75%. This
could be attributed to the increased overall staffing levels and
associated costs with the higher service levels, thus enabling
increased cost savings through cross-training. As noted above, a
much larger range is observed under a hard constraint on the
maximum number of nurses (scenario B). In general, savings
increase as the number of available nurses or the quality levels
are reduced. However, it should be noted that both the minimum
and maximum savings occur when n;me=7. Specifically the
minimum savings occurs with n;m=7 and a HH demand
scenario and Q=0.95, while the highest savings occurred with a
H,L demand scenario and Q=0.85. This discrepancy occurs as with
demand in both departments being highly relative to available
staffing, the impact of cross-training is reduced as cross-trained
nurses are unlikely to be available to their cross-trained depart-
ment given the high probability of being required in their home
department.

Thus, over all scenarios tested cost savings are realized, in
addition to the staffing benefits described in Section 4.1.1. Further,
these savings tend to increase when tighter constraints on avail-
able nursing staff exist. Finally, it should also be noted that these
results are actually somewhat conservative as the impact of
absenteeism is not considered. As determined by Inman et al.
(2005) and others, the benefits of cross-training increase with
higher rates of absenteeism.

4.1.3. Impact of quality of cross-trained staff

In Sections 4.1.1 and 4.1.2, we assumed that cross-trained staff
and regular nurses provide the same quality of service for a given
level of experience. However, given findings in the extant litera-
ture for non-health care problem settings that indicate that quality
may be adversely affected by cross-training, this assumption may
not always be true in a hospital setting either. Retaining all the
settings as those applied in prior sections, we evaluated scenario A

H.H (10,10) v H,H (10,10)
LL(55)

HL (10,5)

LH (5,10)

Fig. 1. Impact of quality of cross-trained staff on cost savings.

Table 11
Service levels with and without cross-training.

LH (5,10) H,L (10,5) LL(55) H,H (10,10)
Cross-training 0.868 0.371 0.868 0.502
No Cross-training 0.642 0.478 0.642 0.478
Table 12
Percent cost savings under a maximum staffing constraint.
LH (5,10) HL (10,5) LL(5,5) HH (10,10)
Scenario B 3.7 3.7 4.4 34

with & set at 0.7, 0.8 and 0.9 to differentiate quality of care
between regular and cross-trained nurses.

We found that cross-training was beneficial only when the
quality weighting of cross-trained nurses, when compared to
dedicated nurses, was above 0.7. We present the results on both
the total number of nurses required (Table 10) and costs of
providing service for all four demand scenarios and quality
weighting scenarios (Fig. 1) to demonstrate this finding. This
indicates that steps need to be taken to ensure that cross-trained
staff meets certain quality requirements, or are evaluated at
regular intervals, to ensure that the desired performance levels
expected by institutions that employ a cross-training strategy
are met.

4.14. Other demand distributions

In this subsection, our aim is to demonstrate the ability of the
model to handle other demand distributions. We present results
for a few select scenarios using a gamma distribution with an
equivalent mean and variance to the Poisson distribution for
demand in the previous sections, with the quality level set to
0.9 and a maximum number of nurses of 9. Table 11 and 12 present
the effect of cross-training in terms of service level achieved and
cost savings when the maximum number of nurses is fixed
(scenario B). As can be seen, the findings are consistent with those
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presented in Sections 4.1.1 and 4.1.2, Tables 6 and 7, when using
the Poisson distribution, both from a service level and a cost
perspective. This demonstrates that regardless of the distribution
required to describe the nursing demand, we can generate
equivalent results with respect to the impact in the allocation of
nursing resources and addressing nursing shortage crisis.

4.2. Multi-department setup

In the final set of results, we apply the expected total shortage
models within a multi-department environment to study the sensi-
tivity of the optimal (minimum cost) staffing strategy to the cost of
hiring regular (c), cross-trained (c.) and temporary staff (c;). Speci-
fically, we present a qualitative analysis of the impact of chaining on
expected shortage and service levels. We define the propensity to
chain as the overall average of the proportion of staff that is cross-
trained across departments. For example, if one department has 2 out
of 5 staff that are cross-trained, with no cross-training occurring in the
other two departments, then the propensity to cross-train (denoted as
p) would be (2/5+0/5+0/5)/3=0.13. By using various representative
values of the costs given above we define a series of cost ratios, those
being c;/cc, ¢;/cc and c¢/cc, and obtain a number of fundamental
relationships, which are presented in Fig. 2.

The key relationships depicted in Fig. 2 are as follows: (a) as the
cost of a temporary nurse increases when compared to that of a
cross-trained nurse, the propensity to chain in an organization
increases as well, as the benefits from cross-training in terms of
overall costs makes the use of temporary nursing staff less attrac-
tive, even on a temporary basis, and vice versa; (b) as the cost of a
temporary nurse increases when compared to that of a regular
nurse, the propensity to chain increases as shown in the figure, as
long as cross-training costs are fixed relative to the cost of a regular
nurse, and vice-versa. This is related to the first result, as the use of

p (Propensity to Cross Train (Chain)) . Q)

temporary staff are less economically viable compared to cross-
training; and finally (c) as the cost of a cross-trained nurse increases
when compared to that of a regular nurse, the propensity to chain
reduces and vice versa. Here, cross-training is not beneficial
economically, and a hospital would rather obtain services from a
temporary staffing service to cover shortages in a given department.
These results, in combination, point to a possibility of mixed
responses or trends if market pressures on salaries were to result
in simultaneous changes in both temporary and cross-training costs
relative to the cost of a regular nurse. For example, if an increase in
temporary staffing costs were to also put upward pressure on the
salaries of cross-trained staff, depending upon the relative increase
in both salaries compared to that of regular nursing staff, the
increasing temporary costs could decrease the propensity to
cross-train, a reversal of the trend noted in Fig. 2b.

Fig. 3 depicts the impact of the chaining on the expected total
shortage and average service levels in a multi-department setup.
With everything else remaining constant, as the propensity to
chain increases, it has, as expected, a positive impact on the
expected total shortage and expected service levels, with expected
shortages decreasing and overall service levels increasing.

The results presented in Figs. 2 and 3 hold regardless of the
number of departments involved given the chaining method
incorporated in this study. Further, the findings highlight the need
to consider chaining when making resource allocation decisions
especially when faced with tight budgetary constraints. However,
decision makers do need to exercise caution with regard to impact
of chaining or any cross-training on the operational efficiency,
particularly the potential to affect quality of care and service levels
as reported in the extant literature.

Another consideration when implementing a cross-training chain
involving multiple departments is the order of the departments in the
chain. That is, which department should precede another so that

(on

p (Propensity to Cross Train (Chain)) _,
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Fig. 2. Sensitivity analysis - multi-department scenario.
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Expected Total Shortage

Expected Service Level

p (Propensity to Cross Train (Chain))

p (Propensity to Cross Train (Chain)) 1

Fig. 3. Impact of chaining on shortage and service level - multi-department scenario.

particular department provides cross-trained nurses to the next
department in the chain. There are two specific issues related to the
order of chaining. The first is strategic, in terms of skill sets available/
required in both the home and cross-trained departments, as closely
matching skill sets could decrease the likelihood of reduced quality
resulting from cross-training. The second is related to the demand
levels in various departments as well as the number of nurses assigned
to that department. As noted above in Section 4.1.2, cost savings
resulting from cross-training are affected by both demand and
available staff, with increased savings in paired departments of high/
low demand patterns. Thus strategically ordering the chain correctly
results in higher overall cost effectiveness. Thus an important applica-
tion of the multi-departmental model above is to allow administrators
to test various scenarios, given demand and staffing levels, to
determine the most effective chaining strategies including the optimal
ordering across a group of departments.

5. Conclusions and future research

As part of this research endeavor, we developed optimization
models to maximize the benefits of cross-training policies for both
two department and a multi-department setups, considering the
costs of hiring temporary nurses and constraints such as minimum
quality and service levels that organizations aim to achieve.
Though implementation of any cross-training strategy must con-
sider available and required skill sets, as well as broader policy
issues in terms of the integration of nursing resources across
multiple departments, the above models allow administrators to
evaluate the economic, quality and service impacts as part of any
overall cross-training strategy. We developed a heuristic solution
method to generate reliable solutions in reasonable run times and
validated its effectiveness by comparing the heuristic results with
those generated by a complete enumeration search algorithm.
Further, we are able to demonstrate the benefits of cross-training
in term of costs and required nursing resources to meet the patient
demand by taking advantage of cross-training strategies, in parti-
cular chaining, via a case study focusing on the emergency
department and surgical department using real world data.

One limitation in the current models is we do not account for the
effect of absenteeism on the benefits resulting from cross-training
policies. We plan to investigate this issue in the future extensions of
our research effort. We also did not consider the benefits from other
possible variations of cross-training policies such as full cross-training
on the nurse shortage problem. However, several other problem
settings such as within manufacturing, the military, and various
service industries, where customer demand under consideration is
not as sensitive as patient care, etc., might extract higher benefits from
full cross-training policies. We plan to consider this aspect in our

future research. We also have not considered the impacts of con-
straints such as staff retirement age when optimally determining the
number of cross-trained nurses. For example, cross-training may not
pay off for individual staff member that do not have sufficient
remaining years of service to justify the investment.

Appendix A. Expected shortage for department i — two
department case

Given the number of cross-trained nurses in departmenti—1 as
nf_,, then to obtain the probability of a shortage s in department i
we consider all possible scenarios for a specific shortage to occur:

(1) With a demand in department i of n; +s, with no cross-trained
nurses available from i— 1, resulting in

P(D; =n;+$)P(D;_1 = n;_1) (A1)
(2) With a demand in department i of n;+s+T;_1, where 1<

T;_1<n;_1;—1 and exactly T;_, cross-trained nurses available
from i—1, resulting in

ni_, -1
. )y ]P(Di—l =ni_1—=T;_)PD;j=n;+s+T;_1)
i-1=

(A2)

(3) For a demand of s+ nf_, in i and all cross-trained nurses
available from i—1, resulting in

P(D,‘,] gni,17nffl)P(Di=n,'+s+nffl) (A3)

Referring to Eq. (17), wherein the probability of a shortage ‘s’ is
department i is given as follows:

P(shortage department i = s) = P(D; = n; +5)

L
+T > 1P(Di—1 <ni_1=Ti_DIPD; =ni+s+T;_1)—PD; =ni+s+T;_1 - 1)],
1=

we demonstrate its equivalence to the three shortage components
as presented in (A1)—(A3).

Starting at T;_; = 1, we first expand the above summation term as
PD;_1 <ni_1—=1)PD; =i +s+1)—=P(D;_1 <nj_1 — DHPD; = n;+5)

(Ad)

And replacing P(D;_1 <n;_1—1)in the second term with 1—P(D;_
>n;_4) results in
P(D;_1 <nj_1—1P(D; =n;j+s+1)—P(D; =n;+5)

+PD; =n;+s)P(D;_1=>Mn;_1) (A5)
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The last term in Eq. (A5) in bold above is first shortage component as
shown in Eq. (A1) above.

Further, the second term, —P(D; = n;+5) cancels the first term
given in Eq. (17), i.e. P(D;=n;+s), leaving P(D;_; <nj_1—1)
P(D; =n;+s+1).

This term can further be rewritten as
P(Di_1 <nj_1—2)P(D; =n;j+s+1)+P(D;_1 =nj_1 —1P(D; =n;+s+1)

(A6)
Next, taking T;_; =2, we again expand the summation term as
follows:
P(D;_1 <nj_1—2)P(Dj=n;j+5s+2)—P(D;_1 <nj_1—2)P(D;j=n;+s+1)
(A7)
where the second (negative) term cancels the first term in (A2),
leaving
P(D;_1 <nj_1—2)P(D; =n;+5+2)+P(D;_1 =n;_1 — DP(D; = n;+s+1)
(A8)

which again can be rewritten as
P(D;_1 <nj_1=3)P(D;j =n;j+5+2)+P(D;_1 =n;_1 —2)P(D; = nj+5+2)
+P(Di_1 =n;_1 - DPD; =nj+s+1) (A9)

Continuing in the identical fashion from T;_; =3, 4,...n{_,, and
canceling successive positive and negative terms results in

P(D;_1 <nj_;—n{_P(D; =nj+s-+n{_,)
+P(D;_1=n;_1—n{_;+DP(D;=n;+s+n{_;—1)
+-++P(Dj_1=nij_1—2)P(Di =n;+5+2)

+P(D;_1=n;_1 - DPD; =nj+s+1) (A10)

Now, the first term in bold above is the third shortage component
as demonstrated in Eq. (A3) above.

Finally, we collect the remaining individual product terms from
(A10), which can be written as

nf_, -1
Y POi_1=n_1-Ti_)PD;j=n;+s+T;_1)
T, T =1

(A11)

which is the final (second) shortage component as shown in
Eq. (A2) above.

Appendix B. Expected total shortage - two department case

Given the number of cross-trained nurses in department i as nf
and department j as ns, then to obtain the expected total shortage
of s across both departments requires

E[total shortage] = %03 P(total shortage = s)s

s=1

To determine the probability of a shortage of s across departments,
we simply consider all probabilities across departments that result
in a net shortage of ‘s’ given nf and nj.

Thus, starting with an overall shortage of s=1, we get

P(D; = n;+(n{ — 1)+ 1)P(D; =n; — (n — 1))
+P(D; = nj+(nf —2)+1)P(D; = nj— (nf —2))
+ -+ P(D; = nj+ DHP(D; = nj) + P(D; = n)P(D; = nj+ 1) + -
+P(D; = n; — (nf — 2))P(D; = nj+(nf —2)+ 1)
+P(D; = nj— (nf —1))P(D; = nj+(nf — 1)+ 1)
+ P(D; = nj+nf+1)P(D; < nj—nf) + P(D; < n; —n§)P(D; = nj+nf +1)

Similarly for s=2,

P(D; = nj+(nf — 1)+ 2)P(Dj = nj — (n§ — 1))+ P(D; = n +(nf — 2)+2) - P(D; = nj— (nf —2))
+...4+P(D; = n;+2)P(D; = nj)+ P(D; = nj+ 1)P(D; = nj+ 1)+ P(D; = ny))P(D; = n; +2)
+...+P(D; = nj —(n§ —2))P(D; = nj+(nf —2)+2)

+P(D; = nj— (n§ —1))P(D; = nj+(n — 1)+ 2)

+ P(D; = nj+n§ +2)P(D; < nj—nf) + P(D; < nj—n§)P(D; = nj+nf +2)

with the primary difference being the inclusion of the term:
In general, for s =1 to oo, this can be expressed as
nf + nj? +s—1

> P(D; = n; —nf +2)P(Dj = nj+nf —z+>5) (B1)

z=1
+ P(D; = n;+n; +s)P(Dj < nj—nf)+ P(D; < n; —nf)P(D; = nj+nj +5)
where the first group of terms are replaced with the above
summation, and the expected shortage given as
nf+nf+s—1
E[total shortage] = »'2° s[>, ’ P(D; = nj —n{ +2)P(Dj = nj+n{ —z+>5)
P(D; = ni+n5 +$)P(D; <nj—nf) + P(D; < nj—n)P(Dj = nj+nf +5)]

(B2)

which can be separated into the individual components to give

0 ng+ni+s—1

s > P(Di=nj—nf{+2)P(Dj =nj+n{ —z+S5)| + (B3)
s=1 z=1

Y S[P(D; = n;+n; +$)P(D; < nj —nf)]+ (B4)
s=1

> S[P(D; < nj—n{)P(D;j = nj+nf +5)] (B5)
s=1

Taking (B3) and starting with department i we collect terms
starting with P(D; =n;), P(D; =n;+1), P(D; =n;+2),..., we can
take each successive term out of the summation resulting in

P(Dl =n;) 21 S[P(Dj = nJ+5)]+P(D, =N;+ 1) Z] S[P(Dj = nj+5)]
S= sS=
FPDi =0 +2) Y SIP(D; = 1y +$)]+ -
s=1
or equivalently as
[P(D; = 1)+ P(D; = i+ 1)+ P(Dy = 1 +2) + 1] 3, S[P(D; = nj+5)]
s=1
= Y P(Di=n;+x) Y, s[P(Dj=n;+s)]
x=0 s=1
=PD; > n;) le[P(Dj =n;+5)] (B6)
s=
An equivalent expression for department j results in
[P(D; = )+ P(Dj = nj+ 1)+ P(D; = ;4 2) + -] 3" S[P(D; = n;+5)]
s=1
= 2 P(Dj = le—!—X) Z S[P(D; = n;+5s)]
x=0 s=1
=P(Dj=m) Z]S[P(Di =n;+S)] (B7)
§=

Finally, collecting the remaining terms from (B3), which are com-
posed of intermediate terms that result in a total shortage of s,
ie. from P(D;=n;—(n{+1)P(Dj=n;j+(nf+1)+s) to P(D;=n;+
(nf +1)+$)P(Dj = nj— (nf +1)), which may be rewritten as

00 nf—1

Z N 2 P(D; =n; —X)P(Dj =1n; +X+5) (B8)
1

s=1 X=
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and

nt—1

o0 J
Z] s Zl P(D; =n;+y+$)P(D; =n;—y)
5= y=

(B9)

Last, we regroup the various equations, specifically combining (B4),
(B7) and (B9), and (B5), (B6) and (B8), to get

P(D; =n; +nJ? +5)P(Dj < nj— n}?)+

o P(D; = nj)[P(D; = nj+s)]+ o0
> S| g = > s[P(shortage =s in dept. i)]

=t JZ P(D; =nij+y+s)P(Dj =n;—y) o=t
y=1

(B10)

and
P(D; < n; —n{)P(D; = nj+nf 4-5)+
oo P(Dj > nj)[P(Di =n;+9S)|+ 00
> S| e = Y s[P(shortage =s in dept. j)]

s=1 s=1

-1
Z P(D; =n,'7x)P(Dj =nj+x+s)

x=1
(B11)

Thus the total expected shortage across both departments can be
expressed as

2 00
Eftotal shortage]= Y Y P(shortage in depti=s)s
i=1s=1

as given by Eq. (21).

Complete Enumeration Search Algorithm

Input:

D; - {demand in department i}

Ctemp - {cost of temp nurse}

¢y - {cost in department i for a nurse at experience level k}
¢;€ - {cost of cross-training a nurse in department i}

si*= {set service level in department i}

q;°= {set quality level in department i}

qwi= { quality weight for nurse of experience k}

n;™"= {lower bound on number of nurses in department i}
n;"**= {upper bound on number of nurses in department i}
¢~ {current cost}

n= {current total number of nurses in department i}

nj= {current number of cross-trained nurses in department i}
nix= {current number of nurses in department i of experience k}
i={1,2}

k={1,2,3}

M=Huge Number

Subroutines:

Determine service() — calculates service level for a particular nurse mix in each department
Determine quality() - calculates quality level for a particular nurse mix in each department
Determine cost() — calculates total cost for a particular nurse mix across departments

Output:
n;°Pt = {optimal number of total nurses in department i}
n;°Pt = {optimal number of nurses in department i at experience level k}

n;.°P¢ ={ optimal number of cross-trained nurses in department i}
si= {service level in department i}

gi= {quality level in department i}

Ct= Total cost

Process: )
1. Initialize {n;;=n""; nx=0; n3=0; nic=0; c, = M }
2. for i=1to 2 do

VXN R W AW

13.
14.
15.

min max

for n=n;"" to n;
for n;.=0 to njpy+n;3
Determine service()
if si>s;° then
Determine quality()
if g>=q;° and sp>=s;" then
Determine cost()
if Ct <c. then
0 =ny N =0y ; ¢ = Cr
end if
end if
end if
end for
end for
end for
return {n;°P*, n; °Pt, n; P, Cy}

Fig. C1. Pseudo code for complete enumeration search algorithm.
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Appendix C. Search algorithm (SA)

In this section, we discuss a complete enumeration algorithm
(Fig. C.1) designed to serve as a metric to evaluate the quality of
the proposed heuristic, by comparing the global optimal solution it
generates with those generated by the evolutionary algorithm. The
algorithm enumerates all staffing levels combinations of regular,
including all experience levels, and cross-trained nurses to deter-
mine the minimum cost while satisfying the service and quality
goals set by the two interacting departments. To bound the search
space, an upper bound was established as approximately two
standard deviations above the mean demand, rounded to the next
integer value, resulting in service levels in each department in
excess of 90% without cross-training. The lower bound was then
set to the minimum number of total nurses required to meet the
required service level for each department, given that the other
department had its maximum number of nurses all of which were
cross-trained.

The following is an explanation of the subroutines in our
enumeration algorithm. Determine service() calculates the
expected service level in each department, given the specific
demand and number of regular and cross-trained nurses in both
departments. The respective expected service levels are then
compared to the minimum required service level. Similarly, the
Determine quality() subroutine calculates the total quality using a
weighted quality approach for a specific number of regular nurses
of different experience levels. Only enumeration values that met
both the minimum service and quality requirements were con-
sidered a feasible solution set. To determine the final optimal
solution, the costs associated with each feasible solution were
calculated. This calculation within the Determine cost() subroutine
based upon Eq. (6) and the expected shortage Eqs. (13) and (17). As
each cost is estimated, it is compared with the last best solution,
with that having the minimum cost retained as the current
optimal solution. This procedure is repeated for the entire solution
space resulting in a global optimal solution. The entire algorithm
was run on an Intel Processor, 2.8 GHz with 3.83 GB Ram
(see Fig. C1).
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