
COMP 1406 Fall 2015
Assignment #1: Recursion in
BSTrees
Due Date: Thu. Oct. 22 by 10:00pm in
culearn

Assignment Revisions and Corrections will be noted here.

Recursion in Binary Search Trees
This assignment is intended to give you practice
writing recursive code that traverses a common
computer programing structure: a binary search tree.
In this assignment you will implement a simple binary
search tree using recursive methods: insert, find and
remove. These trees are very common to computer
science and are typically handled with recursive
methods to help attain their intended efficiency.

It is intended that you write this assignment by
modifying the answer code from assignment #2. You
can use your own answer code or the code we post
as answer code as your starting point. We will
describe the requirements as though you are

modifying the answer code from assignment #2 but
you are of course free to start from scratch as well.

Assignment Marking:

This assignment is based on 21 specific design
requirements numbered R1.1... R5.3. Two marks
each for a total of 42 marks. You get 2 marks if the
requirement is satified and well implemented, 1 mark
if only partly satisfied or poorly implemented, and 0 if
the requirement is not satisfied.

In addition there are some general programming and
good practice requirements that you must satisfy.
These requirements are numbered R0.1, R0.2 You
will lose marks from your assignment score if these
requirements are not satisfied.

Good Programming and Good Practice
Requirements

The following requirements will pertain to all your
assignments regardless of what your application is
supposed to do (i.e. regardless of the design
requirements). These requirements are to ensure that
your code is readable and maintainable by other
programmers (or readable by TA's in our case), and
that your program is robust and follows good software
engineering practrices You will lose 2 marks from
your total assignment mark for each of the

following requirements that is not satisfied. If you do
not satisfy requirement R0.0 or R0.1 you will get
nothing for the assignment.

R0.0) IMPORTANT Uniqueness Requirement. The
solution and code you submit MUST be unique. That
is, it cannot be a copy of, or be too similar to,
someone else's code, or other code found elsewhere.
A mark of 0 will be assigned to any assignment that is
judged by the instructors or the TA's not to be unique.
(You are free to use any code posted on our course
web site as part of the course notes or example
code.)

R0.1) CODE ORGANIZATION, SUBMISSION AND
COMPILATION: Your code should be submitted to
culearn as an IntelliJ IDEA project. You can zip up the
files is you like but you must use .zip format (not other
compression formats.) The markers must be able to
compile your code using the Java 1.8 or later compiler
from within the course IDE (IntelliJ IDEA in this
case). (Demonstration code will be provided as
IntelliJ projects and your work will be assessed by
opening your code as an IntelliJ IDEA project,
compiling the code and then running it. For the
purposes of assignments only have one file with a
main(){...} routine in it and use the word "main" as part
of the class name. The following process will be used
to mark your assignment code:

1)The TA will open IntelliJ and open your code as an
IntellliJ project. (If you compress your code then
provide a .zip file only (we will not support .rar, .tar, ...
etc.) Only .zip files.

2)The TA will then rebuild (compile) your project and
look for a source file among your code with "main" in
its file name and then run that as a java application.

3)Once your code launches it will be evaluated
against the assignment requirements.

If any of steps 1,2 or 3 fail the assignment gets a
mark of 0. So be aware no partial marks will be
awarded to assignments that don't compile and run.
Assignments are intentionally broken down into many
small requirements. It is better have running code that
satisfies some of them than to have code that won't
compile and run but claims to be address more
requirements.

The following good practice requirements will be in
effect for all assignments.

R0.2) All of your variables, methods and classes
should have meaningful names that reflect their
purpose. Do not follow the convention common in
math courses where they say things like: "let x be the
number of customers and let y be the number of
products...". Instead call your variables
numberOfCustomers or numberOfProducts. Your

program should not have any variables called "x"
unless there is a good reason for them to be called
"x". (It's OK to call simple for-loop counters i,j and k
etc. when the context is clear and very localized.)

R0.3) All variables in your classes should be
private, unless a specific design requirements asks
for them to be public (which is unlikely). It is good
programming practice to design objects that provide
services to others through their public methods.
How they store their variables is their own private
business.

R0.4) Robustness Requirements: Your program
should never crash when is is being run for marking.
Make sure you have no null pointer exceptions or
attempt to access an array or data structure out of
bounds. (We get especially annoyed by out of bounds
errors since they still seem to be the number one bug
in programming and have been for a long long time!)

R0.5) Code Comment Requirements: Comments in
your code must coincide with what the code actually
does. It is a very common bug in industry for people
to modify code and forget to modify the comments
and so you end up with comments that say one thing
and code that actually does another. By the way, try
not to over-comment your code; instead choose good
variable names and method names which make the
code more "self commenting".

R0.6) Hard Coded Constants: Your code should not
have hard coded constants used in places like if
statements or function parameters. Your constants
should have meaningful names. Don't have if
statements like if(ball.getLocationX() + 40
< 100) ...; instead your code should look like
if(ball.getLocationX() + ballRadius <
rightBoundaryX) ...; If necssary create local
variables that reflect the use of the constant. e.g.
double rightBoundaryX = 100; then you can
refer to that in your program logic.

VERY IMPORTANT: Any demo code or sample code
fragments provided may have bugs (although none
are put there intentionally). It is part of your task to
identify errors in the code and in the
requirements. Please report errors so they can be
fixed and discussed in class.

Design Requirements

Pictured above is an application showing a binary
search tree, or BST. A BST is a binary tree meaning
each node has at most two children. The children are
referred to as the left child and right child. Also it is a
search tree meaning that items, or labels, in the left
subtree of a node are less than, or "come before" the
label of the node. Similarly labels in the right sub-tree
of a node are great than or "come after" the label of
the node. Here greater than and less than refer to
alphabetical order of the node labels. This order can
be determined for strings using the String class'
compareTo() method.

The advantage of a search tree is that you can easily
find an item by starting at the root and at each node
you can decide to visit the left subtree or the right
subtree by comparing the the label you are looking for
with that of the node you are at. Notice if you follow
this strategy you will either find an item by traversing
a single path from the root to the item, or reach a leaf
where you can conclude the item you are looking for
is not in the tree. The strategy lends itself very well to
recursion.

If you follow the strategy of starting at the root and
then visiting either the left or right subtree until you
find what you are looking for, the number of nodes
you will visit is proportional to the height of the tree.
Conversely, if you had an array, or arraylist, of
unsorted nodes and you looped through it looking for

a node the number of nodes you would visit is
proportional to the total number of nodes.

There is a famous theorem that says if a tree is
sufficiently balanced the height of the tree is
proportional to the log of the number of nodes in the
tree. Thus a sufficiently balance BST of n nodes can
be searched for an item in O(log(n)) time. Whereas an
arraylist of unsorted nodes would take O(n) time to
search. This is the potential advantage of a binary
search tree. To achieve this these methods are
typically implemented recursively.

Though it might not be obvious you can insert an item
into a binary search tree in O(log(n)) time as well and
you can remove an item from a binary search tree in
O(log(n)) time. Again in both cases recursive code
provides the most straight-forward implmentation.

For this assignment you can start with the answer
code from assignment #2 (either that provided by us,
or your own code). Your app should provide the
"insert", "remove" and "find" buttons and methods and
do the animations as in the previous assignment. The
difference will be that you will be building a binary
search tree instead of an offspring tree. Also, in this
assignment the insert, remove and find methods
must be implemented recursively. Note there is no
concept of gender in a BST like there was in our
previous "offspring" tree assignment.

BSTreeNode Requirements.

R1.1) Replace the TreeNode class from the previous
assignment with a BSTreeNode class subject to the
following requirements.

R1.2)The BSTreeNode should allow only two
children: a left child and right child.

R1.3 Instead of an arraylist of children the
BSTreeNode should just have a leftChild and
rightChild variable each of type BSTreeNode.

R1.4 Instead of an addChild() method the
BSTreeNode should have an addLeftChild() and
addRightChild() method. You are free to add
other needed methods.

Finding Nodes Requirements.

R2.1) You should be able to find and highlight a node
in the tree by typing the node label in the application
text field and pressing the "Find" button subject to the
following requirements.

R2.2)The find operation should be done by an
public BSTreeNode find(String aLabel)
method in the BSTreeNode class. It should return the
node if found, and hightlight the node. It should return
null if no node is a found.

R2.3)The find method must be implemented
recursively. (You are not allowed to have a "helper"

arraylist of all the nodes". Your code must traverse
the tree by starting at the root and visiting the
appropriate children.

R2.4)Your find method should run in time
proportional to the height of the tree. This will happen
automatically if you visit only the required left subtree
or right subtree.

Node Insertion Requirements.

R3.1) You should be able to insert a node into the
BSTree by typing a single word in the text field and
clicking the "insert" button..

R3.2)The insertion should be done by an public
void insert(String aLabel) method in the
BSTreeNode class. It should insert a new node with
label aLabel in proper search tree order. If a node
with the same label as the one you are trying to insert
already exisits your insert() method should do
nothing and return.

R3.3)The insert method must be implemented
recursively. (You are not allowed to have a "helper"
arraylist of all the nodes". Your code must traverse
the tree by starting at the root and visiting the
appropriate children. (We will go over the strategy for
recursive insertion in class, or you can also google it.
It is a well known technique.)

R3.4)The tree resulting from the insert must be a legal
binary search tree.

R3.5)Your insert method should run in time
proportional to the height of the tree. This will happen
automatically if you only visit the appropriate left
subtree or right subtree during insertion.

Node Removal Requirements.

Note we will only implement a simplified removal: we
will only require that you be able to remove leaf
nodes. (If you are looking for additional challenge see
if you can code your method to also allow removal of
non-leaf nodes.)

R4.1) You should be able to remove leaf nodes from
the tree by typing the node label in the application text
field and pressing the "Remove" button.

R4.2)The removal should be done by an public
remove(String aLabel) method in the
BSTreeNode class.

R4.3)The remove method must be implemented
recursively. (You are not allowed to have a "helper"
arraylist of all the nodes". Your code must travese the
tree by starting at the root and visiting the appropriate
children. (We will go over the strategy for recursive
removal in class, or you can also google it. It is a well
known technique.)

R4.4) The tree resulting from the removal must be a
legal binary search tree. (You need only implement
removal of leaf nodes.)

R4.5)Your remove method should run in time
proportional to the height of the tree. Again this will
happen automatically if you only visit the appropriate
left subtree or right subtree during removal.

Node Animation Requirements.

If a mutable structure changes suddenly it can be
hard to follow what the changes were. But if the
structure "slides" or "morphs" into its new
configuration then the changes are easy to follow. We
want you to implement this like in the last assignment.
The main difference here is that a left child should
always be drawn to the left of its parent and a right
child should be drawn to the right of its parent.

R5.1) When the animation timer is running (controlled
by the provided menu items) insertion and removal of
nodes should cause the restructuring of the tree to be
animated over time (we will show a demo in class).
When the animation timer is not running the changes
can be abrupt.

R5.2) When animation is running and a new child
node is inserted, the child node should start at its
parent's location and "slide" to its proper location over

the course of time (a few seconds). Other nodes
should also slide to their new intended locations.

R5.3) Left child nodes should be drawn to the left for
their parent; right child nodes should be drawn to the
right of their parent.

