MATH 674.3

Winter 2014

Written Assignment 5

Instructions: Solutions must be provided in one of the following formats.

- LaTeX (preferred). Download the template to make this easier.
- Word or your choice of software, with proper math formatting and converted into a single .pdf file.
- Hand-written solutions, written legibly with HB2 pencil on un-lined paper, and scanned into a single .pdf file.

1. $\begin{bmatrix} 2 \text{ marks} \end{bmatrix}$

When elliptic curves are used for cryptography, why are elliptic curves over finite fields better than elliptic curves over the real numbers?

2. [8 marks]

An elliptic curve $y^2 = x^3 + ax + b \pmod{29}$ includes points P = (7, 15) and Q = (16, 13).

- (a) Determine with justification the equation of the curve.
- (b) Determine with justification all values of x for which there is no point (x, y) on the curve.
- 3. [5 marks]

Sometimes students wonder why the geometric construction P + Q requires the reflection step. Suppose instead that we used a simpler no reflection definition to add elliptic curve points, letting R = P + Q where P, Q, R are collinear points on an elliptic curve (i.e. removing the reflection step from the definition of addition).

- (a) Show that with a *no-reflection* definition of addition, we could get $2P = \mathcal{O}$ for every choice of P.
- (b) What advantage does the actual definition of addition (that is, with the reflection step) have over the *no-reflection* definition of R = P + Q?

4. [8 marks]

For this question, you may work by hand or use the applet Elliptic Curves Applet: over Z_p in the Content for Module 5. Computations are over the elliptic curve $y^2 = x^3 + 11x + 6$ over \mathbb{Z}_{23} . To support your answer, you can quote calculations without great detail. For example, you could say that 2(2, 6) = (19, 17), without detailing the calculations of m, x, y. **Tip:** Organize your work to avoid unnecessary repetition.

Given a positive integer k, define a set of points S(k) on the elliptic curve as follows: $P \in S(k)$ IF AND ONLY IF $[(2^k)P = \mathcal{O} \text{ AND } (2^{k-1})P \neq \mathcal{O}].$

- (a) Determine with justification all points in S(1).
- (b) Determine with justification all points in S(2).
- (c) Determine with justification the largest value of k for which S(k) is not empty, and the corresponding points in S(k).

1

5. [13 marks]

Finding $\frac{1}{2}R$ with Bisection Method: Let R = (3, 3.742) on the elliptic curve $y^2 = x^3 - 6x + 5$ over the real numbers. Goal: Using a bisection method, we will determine a point P_n on the curve so that $2P_n \approx R$ or $P_n \approx \frac{1}{2}R$.

Round and show all numbers to 3 decimal places. Method: In parts (a)-(c), we determine suitable starting points P_1 and P_2 .

- (a) If $P_1 = (0.400, y_1)$ and $P_2 = (0.750, y_2)$ lie on the curve, determine the possible values for y_1 and y_2 .
- (b) For each possibility in (a), determine the corresponding coordinates of $2P_1$ and $2P_2$.
- (c) From (a) and (b), select the values of y_1, y_2 so that $P_1 = (0.400, y_1), P_2 = (0.750, y_2)$ lie on the curve, and so that $2P_1, 2P_2$ and R lie in the same quadrant of the xy plane and on the same piece of the elliptic curve.

On the elliptic curve to the right, graph R, P_1 and its geometric construction of $2P_1$, and P_2 and its geometric construction of $2P_2$.

(d) Beginning with P_1 and P_2 from (c), list a sequence of points $P_1, P_2, P_3, ..., P_n$, all in the same quadrant of the xy plane, so that each successive x_{2P_i} gets closer and closer to x_R ; that is, $|x_{2P_{i+1}} - x_R| \leq |x_{2P_i} - x_R|$ for most (but not necessarily all) $i \geq 2$.

The last point in your sequence, P_n , should satisfy $|x_{2P_n} - x_R| \leq 0.005$ so that $2P_n \approx R$.

Bisection Method: To create each successive point P_i in the sequence, find two previous points P_j and P_k as late as possible in the sequence such that $x_{2P_j} < x_R < x_{2P_k}$. Then define x_{P_i} as the average of x_{P_j} and x_{P_k} , and calculate the corresponding values of y_{P_i} , m, x_{2P_i} , y_{2P_i} and $|x_{2P_i} - x_R|$. Report your results in a table like that to the right, including as many columns as necessary. Computations may be done in a spreadsheet such as Excel. You may include a screenshot of your work.

i	3	4	
k	2		
j	1		
$x_{P_i} = \frac{x_{P_j} + x_{P_k}}{2}$			
y_{P_i}			
m			
x_{2P_i}			
y_{2P_i}			
$ x_{2P_i} - x_R $			