Written Assignment 5

Instructions: Solutions must be provided in one of the following formats.

- LaTeX (preferred). Download the template to make this easier.
- Word or your choice of software, with proper math formatting and converted into a single .pdf file.
- Hand-written solutions, written legibly with HB2 pencil on un-lined paper, and scanned into a single .pdf file.

1. [2 marks]

When elliptic curves are used for cryptography, why are elliptic curves over finite fields better than elliptic curves over the real numbers?
2. [8 marks]

An elliptic curve $y^{2}=x^{3}+a x+b(\bmod 29)$ includes points $P=(7,15)$ and $Q=(16,13)$.
(a) Determine with justification the equation of the curve.
(b) Determine with justification all values of x for which there is no point (x, y) on the curve.
3. [5 marks]

Sometimes students wonder why the geometric construction $P+Q$ requires the reflection step. Suppose instead that we used a simpler no-reflection definition to add elliptic curve points, letting $R=P+Q$ where P, Q, R are collinear points on an elliptic curve (i.e. removing the reflection step from the definition of addition).
(a) Show that with a no-reflection definition of addition, we could get $2 P=\mathcal{O}$ for every choice of P.
(b) What advantage does the actual definition of addition (that is, with the reflection step) have over the no-reflection definition of $R=P+Q$?
4. [8 marks]

For this question, you may work by hand or use the applet Elliptic Curves Applet: over Z_{p} in the Content for Module 5. Computations are over the elliptic curve $y^{2}=x^{3}+11 x+6$ over \mathbb{Z}_{23}. To support your answer, you can quote calculations without great detail. For example, you could say that $2(2,6)=(19,17)$, without detailing the calculations of m, x, y.
Tip: Organize your work to avoid unnecessary repetition.

Given a positive integer k, define a set of points $S(k)$ on the elliptic curve as follows:
$P \in S(k)$ IF AND ONLY IF $\quad\left[\left(2^{k}\right) P=\mathcal{O}\right.$ AND $\left.\left(2^{k-1}\right) P \neq \mathcal{O}\right]$.
(a) Determine with justification all points in $S(1)$.
(b) Determine with justification all points in $S(2)$.
(c) Determine with justification the largest value of k for which $S(k)$ is not empty, and the corresponding points in $S(k)$.
5. [13 marks]

Finding $\frac{1}{2} R$ with Bisection Method: Let $R=(3,3.742)$ on the elliptic curve $y^{2}=x^{3}-6 x+5$ over the real numbers. Goal: Using a bisection method, we will determine a point P_{n} on the curve so that $2 P_{n} \approx R$ or $P_{n} \approx \frac{1}{2} R$.

Round and show all numbers to 3 decimal places.
Method: In parts (a)-(c), we determine suitable starting points P_{1} and P_{2}.
(a) If $P_{1}=\left(0.400, y_{1}\right)$ and $P_{2}=\left(0.750, y_{2}\right)$ lie on the curve, determine the possible values for y_{1} and y_{2}.
(b) For each possibility in (a), determine the corresponding coordinates of $2 P_{1}$ and $2 P_{2}$.
(c) From (a) and (b), select the values of y_{1}, y_{2} so that $P_{1}=\left(0.400, y_{1}\right), P_{2}=\left(0.750, y_{2}\right)$ lie on the curve, and so that $2 P_{1}, 2 P_{2}$ and R lie in the same quadrant of the $x y$ plane and on the same piece of the elliptic curve.

On the elliptic curve to the right, graph R, P_{1} and its geometric construction of $2 P_{1}$, and P_{2} and its geometric construction of $2 P_{2}$.

(d) Beginning with P_{1} and P_{2} from (c), list a sequence of points $P_{1}, P_{2}, P_{3}, \ldots, P_{n}$, all in the same quadrant of the $x y$ plane, so that each successive $x_{2 P_{i}}$ gets closer and closer to x_{R}; that is, $\left|x_{2 P_{i+1}}-x_{R}\right| \leq\left|x_{2 P_{i}}-x_{R}\right|$ for most (but not necessarily all) $i \geq 2$.
The last point in your sequence, P_{n}, should satisfy $\left|x_{2 P_{n}}-x_{R}\right| \leq 0.005$ so that $2 P_{n} \approx R$.

Bisection Method: To create each successive point P_{i} in the sequence, find two previous points P_{j} and P_{k} as late as possible in the sequence such that $x_{2 P_{j}}<x_{R}<x_{2 P_{k}}$. Then

i	3	4	\ldots
k	2		
j	1		
$x_{P_{i}}=\frac{x_{P_{j}}+x_{P_{k}}}{2}$			
$y_{P_{i}}$			
m			
$x_{2 P_{i}}$			
$y_{2 P_{i}}$			
$\left\|x_{2 P_{i}}-x_{R}\right\|$			

