Boe-Bot Activity

The Boe-Bot robot

Image source: Robotics with the Boe-Bot -Student Guide

Boe-Bot Circuit Board – Rev D

Moving the Boe-Bot

- The Boe-Bot is equipped with servo motors and a microcontroller ("brain"), which can be programmed by the user
- The Boe-Bot's wheel movement is controlled by the rotation of these servo motors
- The servo motors' rotation are, in turn, controlled by electrical <u>*pulses*</u> applied to <u>specific circuit **pins**</u> of the Boe-Bot's "brain"
- Each such pin has a number
- Pulses of varying widths can be sent to the pins by the user (you!) via a program →Controlled rotation of servo motors → Controlled movement of the Boe-Bot!

- Each HIGH pulse rotates the servo motor
- The direction of rotation is determined by the width (duration) of the HIGH pulse
- Successive HIGH pulses are separated from each other by a PAUSE

- A HIGH pulse lasting for **1.3 ms** (*milliseconds*) rotates the servo motor **clockwise**
- A HIGH pulse lasting for **1.7 ms** rotates the servo motor **counter-clockwise**
- A HIGH pulse lasting for **1.5 ms** causes the servo motor to **stay still**

How to apply pulses to pins via programming?

- Use the **PULSOUT** command of the PBASIC programming language
- The PULSOUT command's *argument* generates a pulse (at pin *N*) that lasts for *Argument* * 0. 002 milliseconds *i.e.*

Actual duration of pulse = Argument * 0. 002 milliseconds

- Rearranging the equation,
 <u>PULSOUT Argument = Actual Duration in milliseconds * 500</u>
- Example: The command,

PULSOUT 12, 650

generates a HIGH pulse lasting 1.3 ms at pin 12, causing the servo motor connected to pin 12 to rotate full-speed clockwise

Example Code: Moving Boe-Bot for 3 seconds

' {\$STAMP BS2}

' {**\$PBASIC 2.5**}

DEBUG ''Boe-bot is running the program" counter VAR Byte

FOR counter = 1 TO 122	'Runs the FOR loop 122 times; initially, counter = 1
PULSOUT 13, 850	'Generates 1.7 ms pulse at pin 13 (pin 13 servo rotates counterclockwise)
PULSOUT 12, 650	' Generates 1.3 ms pulse at pin 12 (pin 12 servo rotates clockwise)
PAUSE 20	'Pause for 20 ms between pulses
NEXT	'Increment counter by one and repeat loop (repeat till counter = 122)

'Time overhead due to the number of instructions in the loop = 1.6 ms

'TIME TAKEN FOR ONE LOOP EXECTION = 1.7 + 1.3 + 20 + 1.6 = 24.6 ms

'TOTAL TIME OF BOE-BOT MOVEMENT= 122 * 24.6 ms = 3 seconds (approx.)

END

Exercises

- Read slides 4 through 8
- In the program handouts given, <u>replace the question mark</u> <u>symbols (??) with actual numbers</u> to achieve desired Boe-Bot movement
- Test your answers on Boe-Bot

Exercise 1: Moving Boe-Bot backwards for 5 seconds

' {\$STAMP BS2}

' {**\$PBASIC 2.5**}

```
DEBUG ''Boe-bot is running the program"
counter VAR Byte
```

 FOR counter = 1 TO ??

 PULSOUT 13, ??

 PULSOUT 12, ??

 PAUSE 20
 'Paul

 NEXT
 'Increase

'Pause for 20 ms between pulses 'Increment counter by one and repeat

'Time overhead due to the number of instructions in the loop = 1.6 ms

'TIME TAKEN FOR ONE LOOP EXECTION = 1.7 + 1.3 + 20 + 1.6 = 24.6 ms

P.S. Nair

END

Exercise 2: Keeping the Boe-Bot still for 3 seconds

' {\$STAMP BS2} ' {\$PBASIC 2.5}

DEBUG ''Boe-bot is running the program" counter VAR Byte

FOR counter = $1 \text{ TO} 122$	
PULSOUT 13, ??	
PULSOUT 12, ??	
PAUSE 20	'Pause for 20 ms between pulses
NEXT	'Increment counter by one and repeat

'Time overhead due to the number of instructions in the loop = 1.6 ms

END

Exercise 3: Identify the wheel controlled by pin 12 '{\$STAMP BS2} '{\$PBASIC 2.5}

DEBUG ''Boe-bot is running the program" counter VAR Byte

FOR counter = 1 TO 122PULSOUT 13, ??PULSOUT 12, ??PAUSE 20'Pause for 20 ms between pulsesNEXT'Increment counter by one and repeat

'Time overhead due to the number of instructions in the loop = 1.6 ms

END

Questions??

Thank you!!