
Object Models

• Object models describe a system by dividing the objects in the system into

classes with common attributes and behaviour, and specifying the

relationship between the classes.

• Object models are static models — they do not show how the objects

react over time.

• The object model should be independent of the implementation language.

Reading

• Sommerville 9ed Ch 5.3

• Supplementary material on StudyDesk

CSC2407 Introduction to Software Engineering Class Models 1

Why Use Object Models?

• The objects and the relationships tend to be less likely to change during

requirements analysis than the exact functionality. (A win compared with

DFD functional models).

• Certain kinds of systems can be naturally modelled as interacting objects:

e.g. a mouse sends a double click message to a window. (But many

systems are not of this kind.)

• OO approach uses modularity, encapsulation, and abstraction.

Note: these are not unique to OO — the Abstract Data Type approach to

program design exhibits these characteristics.

CSC2407 Introduction to Software Engineering Class Models 2

What is an object?

• It is a “thing” that you can interact with.

– Physical object (book, person) or a conceptual object like a data

structure.

• It reacts to messages which are sent to it.

– An object may receive many different kinds of messages, so each kind

has a name to distinguish it. E.g. Start, Stop.

– A message may have ≥ 0 arguments.

E.g. wait 30, moveto 10,20

– An object understands a fixed set of messages.

CSC2407 Introduction to Software Engineering Class Models 3

What is an object?

• Its behaviour (when sent a message) depends on its current state.

– Object state is represented by its attributes (also called instance variables).

– Attributes may be constants (Customer-id) or variables (Account-balance).

• It has identity. Each object is unique, and can be identified in some way to

distinguish it from other similar objects.

– Two separate objects may have precisely the same state but are not

considered identical.

E.g. Two identical widgets manufactured by a machine tool.

– Objects are not defined just by the current attribute values.

– Objects have a continued existence.

CSC2407 Introduction to Software Engineering Class Models 4

Interfaces

• An object has a public interface:

a list of messages than will be accepted (from any other object).

• Interface will also define message arguments.

• Attributes can be included in a interface.

– This declares an object attribute as available for inspection and possible

modification.

– This precludes redeclaration of an attribute without rewriting the code

which accesses the attribute.

• An object can have a private interface:

defines message that it can send itself, and private attributes.

(The object can also use the public interface.)

• Sometimes there is an intermediate (between public and private) interface

available to selected other objects.

CSC2407 Introduction to Software Engineering Class Models 5

Classes

• Don’t want to fully define object every time it is created.

• A class is a convenient way of describing objects with similar

characteristics:

– Defines Attributes, Messages etc

– An object is an instance of a class.

– We create an object by instantiating a class.

• A class method describes how a message is responded to.

• An object has it’s own attributes, but “shares” the class methods with

other objects of the same class.

• Class attributes are also possible (C++ static attribute).

• The semantics of object creation varies between languages:

– C++/Java must include constructor method

– Others: possible to define initial values in class definition.

CSC2407 Introduction to Software Engineering Class Models 6

UML notation for Classes & Objects

• Objects

object name : Class name:Class name

Object diagrams are not commonly used, but can help during requirements

analysis because they provide a physical model, unlike class diagrams.

• Classes. Typically some attributes and methods are omitted in early stages

of modelling.

atribute:type=initial value

operation(args):return type

Class NameClass name

CSC2407 Introduction to Software Engineering Class Models 7

Inheritance/Generalisation

Vehicle

Motorcycle Car Truck

• Inheritance saves effort and possible error by allowing a subclass to use

methods and attributes defined in the superclass.

• The subclass can redefine any superclass properties.

• The subclass can define new properties.

• Car
inherits from
is a specialisation of
is a derived class (subclass) of

Vehicle.

• Vehicle
is a generalisation of
is a base class (superclass) of

Car.

CSC2407 Introduction to Software Engineering Class Models 8

A small example

• From Pooley & Stevens Using UML

• Introduction to class (object relationship) diagrams

• How to identify classes

• Developing relationships between classes

• Consider a simple University library

The library contains books and journals. It may have several copies of a given

book. Some of the books are for short term loan only. All other books may be

borrowed by any library member for three weeks. Members of the library can

normally borrow up to six items at a time, but staff can borrow up to 12 items.

Only staff can borrow journals.

The system must keep track of when items are borrowed and returned,

enforcing the rules above.

CSC2407 Introduction to Software Engineering Class Models 9

Identifying classes

• This is perhaps the most important single step in OO modelling.

• Key method: noun identification

– Start with a clear description.

– Highlight nouns and noun phrases: i.e. identify things.

This identifies candidate classes.

– Only record the singular version of the noun, as we can always create

collections of a class.

– Examine this list and remove the spurious classes.

CSC2407 Introduction to Software Engineering Class Models 10

Noun Identification

The library contains books and journals. It may have several copies of a

given book. Some of the books are for short term loan only. All other books

may be borrowed by any library member for three weeks. Members of the

library can normally borrow up to six items at a time, but staff can borrow

up to 12 items. Only staff can borrow journals.

The system must keep track of when items are borrowed and returned,

enforcing the rules above.

CSC2407 Introduction to Software Engineering Class Models 11

Rejecting classes

✗ library — outside the scope of our system

✓ book

✓ journal

✓ copy of a book

✗ short term loan — an event not a thing

✓ library member

✗ week — time; not a thing

✗ member of the library — redundant

✗ item — too vague; use book or journal instead

✗ time — not a thing

✗ system — a general term, not descriptive of our problem

✗ rule — a general term, not descriptive of our problem

CSC2407 Introduction to Software Engineering Class Models 12

Look for associations between the selected classes

• “copies of a given book”

• “books may be borrowed by any library member”

– note that library member can include staff

• “staff can borrow journals”

MemberOfStaff

LibraryMember

Book

Copy

Journal

borrows/returns

borrows/returns

is a copy of

borrows/returns

CSC2407 Introduction to Software Engineering Class Models 13

Add multiplicity; look for generalisations

LibraryMember

MemberOfStaff

Copy

Book

Journal
borrows/returns

borrows/returns

1

1 0..*

0..*

1
is a copy of

1..*

CSC2407 Introduction to Software Engineering Class Models 14

Further possible generalisation?

Item is not associated with another class — it would hold common attributes

and methods. It is an implementation convenience not a feature of the library.

Book

Journal

Item

LibraryMember

MemberOfStaff

1

1

borrows/returns

borrows/returns

Copy
0..*

is a copy of

1..*1

0..*

CSC2407 Introduction to Software Engineering Class Models 15

Associations

• How are objects of two or more classes related?

• An association connects classes and represents a possible link between a

pair of objects at run time.

• Look for verbs and verb phrases: e.g. contains, works for, is married to,

etc.

Class A Class B
role A role B

association name

• Role names are optional.

• Solid triangle shows direction of association. In example above if the

association was works for, then an object of Class A would work for an

object of Class B.

CSC2407 Introduction to Software Engineering Class Models 16

Links and Associations

• An association connects classes and represents a possible link between a

pair of objects at run time.

• a link is an instance of an association

Lecturer Course
teaches* *

CSC221:Coursemary:Lecturer

CSC753:Coursejim:Lecturer

CSC357:Coursesally:Lecturer

CSC100:Coursefred:Lecturer

Classes

Objects

CSC2407 Introduction to Software Engineering Class Models 17

Associations ...

If classes A and B are related, then we expect that

• an object of class A could send a message to an object of class B

• an object of class A could create an object of class B

• an object of class A could receive a message from an object of class B

• an implementation of class A could have an attribute whose value is an

object (or objects) of class B)

CSC2407 Introduction to Software Engineering Class Models 18

Multiplicity

• How many objects of Class A are associated with an object of class B?

(And vice versa.)

• Very important information:

– for understanding the system being modelled

– for implementing a software version of the model

• UML notation

1 *0..1
C C C

1..*
C

• standard syntax lower .. upper, where upper ≥ lower

– integer values: e.g. 0..1, 0..10, 1..5, 8..8

– upper may also be *; e.g. 1..*

– if lower = upper, use just upper bound; e.g. 8..8 ≡ 8

– can use * as shorthand for “0..*”

CSC2407 Introduction to Software Engineering Class Models 19

Attributes

• Identify attributes of an object: look for possessive phrases (population of)

and enumerations (ascending or descending).

• Attributes will not always be obvious — can be added later.

• Don’t use derived attributes like age if dateOfBirth is present.

• Don’t use a (redundant) attribute when an association can provide the

information:

– No need for a numberOfCopies attribute in Book

– You may well add such an attribute for efficiency reasons at

implementation time.

CSC2407 Introduction to Software Engineering Class Models 20

Operations (Methods)

What operations are needed?

• Ask:

– What “actions” could/does this object perform?

– What operations/processes does the object participate in?

– What messages could be sent to the object?

– If the object could speak, what could it tell us?

What could we ask it to do?

• Operations usually change the state of the object.

State = attribute values + links to other objects

• Need operations to set and report the local state (attributes).

– attributes are usually not (& should not be) directly available

CSC2407 Introduction to Software Engineering Class Models 21

Generalisation

• Generalisation is a relationship between classes.

• An object of a specialised class can be used wherever an object of a more

general class is expected; a general object cannot be used in place of a

specialised one.

• The more specialised object should perform a similar operation to the

general object when passed the same message.

• To check if a generalisation relationship exists: if B is a specialisation of A

then we can say every B is a kind of A.

– or more precisely: every instance of B is an instance of A

CSC2407 Introduction to Software Engineering Class Models 22

Generalisation ...

• Inheritance is the mechanism which implements generalisation.

• Problem: changes to superclass may affect subclass behaviour (unless

subclass redefines changed method).

• Superclass is (from a programming point of view) independent of subclass

so it is hard to predict effects of changing the superclass.

• We may wish to invent base classes to simplify programming: e.g. Book

and Journal derived from Item.

• Use generalisation with care — many object models need not contain

generalisation.

CSC2407 Introduction to Software Engineering Class Models 23

Aggregation & Composition

• special case of association, where one object is comprised of many

members of another

• aggregates have independent lifetimes

– Student exists after class has been completed

• “part” of the composition cannot outlive the “whole”

– A faculty cannot survive if a University closes

• association name is optional: assume is a part/member of

• The multiplicity of the composition owner must be 1 or 0..1

1..*

1..*1

1..*

Student

University Faculty

Class

CSC2407 Introduction to Software Engineering Class Models 24

Qualified association

• noting qualified associations is not mandatory

• a qualified association can add precision to a model

• a qualified association can reduce multiplicity to 1

• qualified and non-qualified associations are implemented in the same way

accountNumber
0..1

accountNumber

*

bankName

bankName

Account

AccountBank

Bank

Qualified

Not qualified

CSC2407 Introduction to Software Engineering Class Models 25

Association class

takes

takes

Student Course

grade: Grade

• We can’t store grade in the Student or Course as grade is not a unique

property or either.

• The marks are a consequence of the “taking” of the course, which involves

both Student and Course.

• Class and association have the same name

CSC2407 Introduction to Software Engineering Class Models 26

Ordering and Class constraints

{ordered} *
A B

{constraint}

• Constraints place restrictions on the way objects can be linked.

• (Multiplicity annotations are a form of constraint.)

• Constraints appear inside {...}.

• {Ordered} says the objects are stored in an ordered collection.

• General constraints can be attached to classes — perhaps to define

relationship between attributes.

CSC2407 Introduction to Software Engineering Class Models 27

Derived association

• An association can often be deduced from a pair of associations.

• If shown, should be marked as a derived association

• Derived associations are sometimes implemented for efficiency reasons.

• Note: teaches student can be derived from teaches course and takes but

we cannot deduce teaches course from teaches student and takes.

takes

Lecturer

teaches course
/teaches student

Student Course

CSC2407 Introduction to Software Engineering Class Models 28

Navigability

• This is an implementation issue.

• Is is possible for o1:class A to send message to o2:class B?

• Implementation: does class A have an attribute which contains a reference

to one or more class B objects?

• The arrow shows that Course contains an attribute which refers to a list of

Students.

• Any Course object can find out the names of all the students.

• A Student object cannot (easily) find out the name of all courses taken.

(This would require an exhaustive search of Course objects).

takes
Student Course

CSC2407 Introduction to Software Engineering Class Models 29

Implementation

• Class diagrams are conceptual view.

• Implementation: translate class diagrams to Class definitions

• Translation depends upon language.

• Typically:

– attributes → class variables

– methods → member functions

– associations → pointers or references

CSC2407 Introduction to Software Engineering Class Models 30

Key points

• Object models many be more stable than functional models.

• Not all systems are well suited to object modelling.

• Objects are things with state, behaviour, and identity.

• A class is a convenient way of describing similar objects.

• Inheritance implements code reuse between classes.

• Use noun identification to discover possible classes.

• Classes are related by associations.

• Classes may be related by “is a kind of” generalisation.

• Aggregation and composition are kinds of association.

CSC2407 Introduction to Software Engineering Class Models 31

Key points...

• Qualified association adds precision.

• Association classes add attributes to associations.

• Constraints can be added to classes and associations.

• Derived associations should be annotated with /.

• Navigation shows reachability — used for implementation.

CSC2407 Introduction to Software Engineering Class Models 32

