NIRMA UNIVERSITY INSTITUTE OF TECHNOLOGY

B.Tech Semester V (EC)

2EC301 Electromagne tic The ory

Tutorial - 2

Topic: Coulomb's law and electric fie ld intensity

1. Two alpha particles are separated by a distance of 1 mm and each are having a charge of 3.2×10^{-9} Coulomb. Determine the force of repulsion between them.
2. Calculate the electric field intensity as a distance of 0.2 metre from a charge of $2 \mu \mathrm{C}$ in vacuum?
3. Calculate the electrostatic force between two protons in a nucleus of iron with which they repel each other. Assume a separation of $4.0 \times 10^{-15} \mathrm{~m}$ between protons.
4. A (+ve) point charge of magnitude $4 \mu \mathrm{C}$ is situated in air at the origin of a rectangular co-ordinate system and a second (+ve) charge of $10 \mu \mathrm{C}$ is situated on $(+v e) z$-axis at a separation of 30 cm from origin. Find force on second charge.
5. Four infinite sheets of charge are located as follows: $20 \mathrm{pC} / \mathrm{m}^{2}$ at $\mathrm{y}=7,-8 \mathrm{pC} / \mathrm{m}^{2}$ at $\mathrm{y}=3,6 \mathrm{pC} / \mathrm{m}^{2}$ at $\mathrm{y}=-1$ and $-18 \mathrm{pC} / \mathrm{m}^{2}$ at $\mathrm{y}=-4$. Find \bar{E} at the point : (a) $\mathrm{P}_{\mathrm{A}}(2,6,-4)$; (b) $\mathrm{P}_{\mathrm{B}}(0,0,0) ;$ (c) $\mathrm{P}_{\mathrm{C}}(-1,-1,1.5)$.
6. A Charge $\mathrm{Q}_{0}=1 \mathrm{nC}$ is located in free space at $\mathrm{P}(\mathrm{a}, 0,0)$ Prepare a sketch of the magnitude of the force on Q_{0} as a function of $\mathrm{a}, 0 \leq \mathrm{a} \leq 5 \mathrm{~m}$, produced by two other charges, $\mathrm{Q}_{1}=1 \mathrm{C}$ at $(0,1,0)$ and $\mathrm{Q}_{2}=:$ (a) 1 C at $(0,-1,0)$; (b) -1 C at $(0,-1,0)$.
7. A point charge, $\mathrm{Q}_{\mathrm{A}}=1 \mu \mathrm{C}$, at $\mathrm{A}(0,0,1)$ and $\mathrm{Q}_{\mathrm{B}}=-1 \mu \mathrm{C}$ is at $\mathrm{B}(0,0,-1)$. Find Er , $\mathrm{E} \theta$ and $\mathrm{E} \phi$ at $\mathrm{P}(1,2,3)$.
8. A sheet of charge, $\rho_{s}=2 n C / m^{2}$, is present at the plane $\mathrm{x}=3$ in free space, and a line charge, $\rho_{L}=20 n C / m$, is located at $x=1, z=4$. (a) Find the magnitude of the electric field intensity at the origin. (b) Find the direction of \bar{E} at $\mathrm{P}(4,5,6)$. (c) What is the force per meter length on the line charge ?
9. Three $(+\mathrm{ve})$ charges of magnitude $\mathrm{q}, 2 \mathrm{q}, 3 \mathrm{q}$ are placed in 3 corners of equilateral triangle. Find the magnitude and direction of \bar{E} at the point bisecting the line joining q and 2 q if the length of each side of triangle is ' a '.
10. Determine the electric fie ld due to spherical cloud of electrons giving the volume charge density of

$$
\begin{aligned}
\rho_{\mathrm{v}} & =-\rho_{\circ} & & 0 \leq \mathrm{r} \leq \mathrm{R} \\
& =0 & & \mathrm{r}>\mathrm{R} .
\end{aligned}
$$

Find electric field.

