
1

Please complete Lab 03 and 04 during today’s session.

Lab 06 File Requirements:

Lab 06 Overview – Soduko Summer

In this lab, we use Sudoku puzzles to investigate the use of logic, nested lists, and nested loops. Please start by

downloading the lab06_files.zip file from the course website. This file includes a Python utility for reading files, and

several Sudoku puzzles. You will use the utility function only in the final checkpoint. Until then, you will work with a

given board.

Sudoku

Sudoku is a popular logic puzzle, typically using the digits 1 through 9. There are many Sudoku books and websites. The

puzzle below was taken from http://www.websudoku.com, where you can learn a bit more about the rules of the

Sudoku.

In a Sudoku solution, each row, column, and 3x3 block contains the digits 1 through 9 exactly once. A Sudoku puzzle

starts with only some of the squares having numbers, and there is generally only one way the remaining squares may be

legally filled in. Sometimes finding this solution is easy. Other times it seems impossible.

Checkpoint 0: Double loops

Before you start this lab, we will do a small exercise that will allow you to complete the rest of the lab much faster. This initial checkpoint is an

exercise and will not be checked off.

The idea is that you will need to write a few loops that generate pairs of values of different types. Once you have these loops in place, you can

easily use them as indices for your code later. The best idea is to write them in a separate file. Try doing these both with while and for loops.

1. Write a loop to count from 0 up to 8 (all ranges inclusive from now on).

2. Write a loop to generate pairs of values from 0 up to 8 (basically, for each value above, you will generate a second value between 0-8). As

a special challenge, I added a space and line to separate each 3x3 block.

These will serve as the indices for the Sudoku board entries.

3. Write a loop to generate all items in a given row, say row

4. Write a loop to generate all items in a single column, say column

Lab 06

Lab06_chk1.py Complete

Lab06_chk2.py Must Update – must replace empty board space, ‘ . ’ , with user inputted number and reprint board.

Lab06_chk3.py Must Update – not adding number to board if all checks are True. Passing over to
Files to use in verification – solved.txt, unsolved1.txt, unsolved1.txt

2

5. Finally, write a loop to generate the valid indices for the first 3x3 piece of the board.

Think about how you would modify this to generate the other 3x3 blocks. What are the starting and end indices?

The above exercises are so you can see the patterns of how we can write loops to traverse and work with parts of a Sudoku puzzle. Next, we will

use these loops to actually complete the lab.

Checkpoint 1: Representing and Building the Board

We will represent the Sudoku board as a list of lists of single character strings. Start by looking at the code in check1.py. It has an example board,

stored in the variable bd. Each ‘.’ is an empty location on the Sudoku board, essentially a placeholder.

The given code prints the length of bd, the length of the 0-th list stored in bd, the entry in row 0, column 0, and finally the entry in row 8, column 8.

Run this code, and make sure you understand the output you are seeing.

Write nested for or while loops to print the whole board on the screen. You will first go through each row with one loop, then for each row, you will

go through each column using a second loop (see index range 2 from Checkpoint 0 above). Print each item with space on both sides, and a | after

every third item and third row. Remember, you have exactly 9 rows and 9 columns.

Hint. Double loops can be difficult, so I recommend you start slowly and add complexity. This will also help you in the other parts.

First, read each row as a list, and print each list on a single line. This is doable with a single loop.

Next, add the second loop for formatting each row. Go through each item in the row with a second loop, and construct a string containing your

whole line. For each item, you will append a space before and after the item, and | at the beginning and end. Once done, print this string.

Now that you are printing reasonable lines, figure out how to add the | after every third column in the row.

Finally, add the code to print the line of hyphens (-) as needed. Always do things in small steps, and add complexity.

Checkpoint 2: Assigning Numbers to Cells

Recall that the completed Sudoku board has no repeated numbers in a row, in a column, or in any of the nine 3x3 blocks.

In Checkpoint 2, your code will ask the user to enter a row (starting at index 0), a column (also starting at index 0), and a

number. It will then call function ok_to_add(), which you must write, to check to see if the number can safely be

added to that particular row and column based on the current contents of the Sudoku board. You will then either tell

the user, This number cannot be added, or if it can be added, change the board and reprint it.

To start Checkpoint 2, copy and paste your code from Checkpoint 1. The actual work of Checkpoint 2 is the function

ok_to_add(). It has quite a few checks you will need to write. For example, if the user asks to put a 2 in row 1, column 8,

the function should

3

 check if row 1 contains a 2 already,

 check if column 8 contains a 2 already, and

 check if the 3x3 block starting at row 0, column 6 contains a 2 already.

Also, what about location (1,8) itself? You need to check that there is nothing there already. It is better to move this

check to outside of this function. That way, we can use this function for multiple purposes.

For the Sudoku board from Checkpoint 1, ok_to_add() should return False because there is already a 2 in the 3x3 block.

The ok_to_add() function should also check to see if the row index, the column index, and the number are legal values |

remember that human users make mistakes!

The function ok_to_add() will have separate loops to check the row, the column, and the 3x3 block. The latter is the

hardest because you need to find the lowest row and column indices in the block and then write nested loops to check

all 9 locations. The code should return False immediately when it finds a mistake, but it should wait until all checking is

complete before returning True.

Note that when ok_to_add() returns True, it does not mean that the placement of the number is actually correct. It is

really just a sanity check.

Checkpoint 3: Sudoku Verifier

We are going to make a few changes to your code from Checkpoint 2 to complete this checkpoint. First, you will use the

utility function given to you (in the lab06_util.py module) to read a board from a file. Prompt the user for a file name and

read the board from the file by importing the given code.

Next, you will write a Sudoku solution verifier by utilizing the ok_to_add() function. The verification of a correct solution

to a Sudoku board can be broken down into two steps:

 Verify that there are no empty (‘.’) spaces in the board at all.

 Verify that for every number in the solution, it is ok_to_add() in its current position. For example, if there is a 3

in position (0,1), we want to make sure that ok_to_add(0,1,3,board) returns True.

If all numbers are not empty and all are ok_to_add() in their current position, then the solution is valid. Your job in

Checkpoint 3 is to write the function verify_board() that does just that. To verify your solution, you can use the files

solved.txt, unsolved1.txt and unsolved2.txt.

To complete Checkpoint 3, combine all your code into a while loop that does the following:

ask user for file name

If board is solved according to verify_board:

 print board

 print “Board is solved”

If board is not solved according to verify_board:

ask user for input to the puzzle

if ok_to_add()

add value

print the board

Test Files:

solved.txt – solved board

unsolved1.txt – missing 1 space (coordinate(3, 4))

unsolved2.txt – has multiple, same numbers in same row

