Please complete Lab 03 and 04 during today’s session.

Lab 06 File Requirements:

Lab 06
Lab06_chk1.py Complete
Lab06_chk2.py Must Update — must replace empty board space, ‘.’ , with user inputted number and reprint board.
Lab06_chk3.py Must Update — not adding number to board if all checks are True. Passing over to
Files to use in verification — solved.txt, unsolvedl.txt, unsolvedl.txt

Lab 06 Overview — Soduko Summer

In this lab, we use Sudoku puzzles to investigate the use of logic, nested lists, and nested loops. Please start by
downloading the lab06_files.zip file from the course website. This file includes a Python utility for reading files, and
several Sudoku puzzles. You will use the utility function only in the final checkpoint. Until then, you will work with a
given board.

Sudoku

Sudoku is a popular logic puzzle, typically using the digits 1 through 9. There are many Sudoku books and websites. The
puzzle below was taken from http://www.websudoku.com, where you can learn a bit more about the rules of the
Sudoku.

In a Sudoku solution, each row, column, and 3x3 block contains the digits 1 through 9 exactly once. A Sudoku puzzle
starts with only some of the squares having numbers, and there is generally only one way the remaining squares may be
legally filled in. Sometimes finding this solution is easy. Other times it seems impossible.

«
-

o O O O

~

) N b

-
r
~
b

W Nk
-

WO
-

W A
-
[o)

[S I S
-

-
-~
w

-
o N
o s

1)

oy U o
QLY L N
"N U b
SR

) Y W W

I S Y N
[
~
(
-
[
o0
~

)
o
)
)
)
] &

-~
-~
()

-

W W W Wwwwwww
MWW,

W wow oo

o
o
ow
s
X
o
o
w
w

-

»

)

-

L

]
ISHE S S

Checkpoint 2: Assigning Numbers to Cells

Recall that the completed Sudoku board has no repeated numbers in a row, in a column, or in any of the nine 3x3 blocks.
In Checkpoint 2, your code will ask the user to enter a row (starting at index 0), a column (also starting at index 0), and a
number. It will then call function ok_to_add(), which you must write, to check to see if the number can safely be
added to that particular row and column based on the current contents of the Sudoku board. You will then either tell
the user, This number cannot be added, or if it can be added, change the board and reprint it.

To start Checkpoint 2, copy and paste your code from Checkpoint 1. The actual work of Checkpoint 2 is the function
ok_to_add(). It has quite a few checks you will need to write. For example, if the user asks to put a 2 in row 1, column 8,
the function should

o check if row 1 contains a 2 already,
e check if column 8 contains a 2 already, and
e check if the 3x3 block starting at row 0, column 6 contains a 2 already.

Also, what about location (1,8) itself? You need to check that there is nothing there already. It is better to move this
check to outside of this function. That way, we can use this function for multiple purposes.

For the Sudoku board from Checkpoint 1, ok_to_add() should return False because there is already a 2 in the 3x3 block.
The ok_to_add() function should also check to see if the row index, the column index, and the number are legal values |
remember that human users make mistakes!

The function ok_to_add() will have separate loops to check the row, the column, and the 3x3 block. The latter is the
hardest because you need to find the lowest row and column indices in the block and then write nested loops to check
all 9 locations. The code should return False immediately when it finds a mistake, but it should wait until all checking is
complete before returning True.

Note that when ok_to_add() returns True, it does not mean that the placement of the number is actually correct. It is
really just a sanity check.

Checkpoint 3: Sudoku Verifier

We are going to make a few changes to your code from Checkpoint 2 to complete this checkpoint. First, you will use the
utility function given to you (in the lab06_util.py module) to read a board from a file. Prompt the user for a file name and
read the board from the file by importing the given code.

Next, you will write a Sudoku solution verifier by utilizing the ok_to_add() function. The verification of a correct solution
to a Sudoku board can be broken down into two steps:

e Verify that there are no empty (“.’) spaces in the board at all.
e Verify that for every number in the solution, it is ok_to_add() in its current position. For example, if there isa 3
in position (0,1), we want to make sure that ok_to_add(0,1,3,board) returns True.

If all numbers are not empty and all are ok_to_add() in their current position, then the solution is valid. Your job in
Checkpoint 3 is to write the function verify_board() that does just that. To verify your solution, you can use the files
solved.txt, unsolvedl.txt and unsolved2.txt.

To complete Checkpoint 3, combine all your code into a while loop that does the following:

ask user for file name
If board is solved according to verify_board:
print board
print “Board is solved”
If board is not solved according to verify_board:
ask user for input to the puzzle
if ok _to_add()
add value
print the board

Test Files:

solved.txt — solved board

unsolvedl.txt — missing 1 space (coordinate(3, 4))
unsolved2.txt — has multiple, same numbers in same row

