Part E:Must show all your work step by step in order to receive the full credit; Excel is not allowed. (41-53)

30. Ten trials are conducted in a Bernoulli process in which the probability of success in a given trail is 0.4. If x = the number of successes, determine the following.

a) E(x)	$b)\sigma_{\chi}$
c) P (x = 5)	$d) P (4 \le x \le 8)$
e) P (x > 4)	

31. Work problem number 5 on page 6-14 (a-e).

Determine the following probabilities by use of the table of binomial probabilities: a. $P(X = 1 \mid n = 10, p = 0.40)$ b. $P(X = 2 \mid n = 10, p = 0.70)$ c. $P(X \le 16 \mid n = 50, p = 0.50)$ d. $P(X < 5 \mid n = 10, p = 0.60)$ e. $P(X \ge 8 \mid n = 50, p = 0.80)$

32. Work problem number 9 on page 6-28 (a-f).

ECO 578 Fall 2015 Page **2** of **6**

9.* A lopsided coin provides a 60% chance of a head on each toss. If the coin is tossed 20 times, determine the probabilities for obtaining the following number of heads.

- a) Less than or equal to 8
- b) Equal to 9
- c) Less than 15
- d) Greater than or equal to 12
- e) Greater than 13
- f) Between 8 and 14
- 33. Use problem number 4 on page 6-22 to fill in the table and answer the following questions (a-c).

Dr. Arize's Class Notes

6-22

4. Suppose 20% of the people in a city prefer Pepsi-Cola as their soft drink of choice. If a random sample of 6 people is chosen, the number of Pepsi drinkers could vary from 0 to 6. Shown here are the possible numbers of Pepsi drinkers occurring in the sample. Use the data to determine the mean number of Pepsi drinkers in a sample of 6 people in the city and compute the standard deviation.

Number of Pepsi Drinkers	Probability
0	0.373
1	0.247
2	0.019
3	0.211
4	0.002
5	0.118
6	0.03

 Determine the mean, the variance, and the standard deviation of the following discrete distribution:

x P(X=x) 0 0.0014

34. Work problem number 5 on page 7-23 (a-f).(**Please draw the graph)

ECO 578 Fall 2015 Page 3 of 6

5. Find a Z score, call it Zo, such that:
a.
$$P(Z \ge Zo) = 0.5$$
 b. $P(Z \ge Zo) = 0.025$ c. $P(Z \le Zo) = 0.025$
d. $P(Z \ge Zo) = 0.0228$ e. $P(0 \le Z \le Zo) = 0.4803$ f. $P(Z \le Zo) = 0.0401$

(**Please draw the graph)

35. Work problem number 9 on page 7-47 (a-f). (** Please draw the graph)

9. Find x_0	from the following probabilities: if $\mu = 160$, $\sigma = 16$
a)	$P(X > x_0) = 0.8770$
b)	$P(X < x_0) = 0.12$
c)	$P(X < x_0) = 0.97$
d)	$P(136 \le X \le x_0) = 0.4808$
e)	$P(x_0 \le X \le 204) = 0.8185$
f)	$P(180 \le X \le x_0) = 0.0919$

(** Please draw the graph)

36. Find the following probabilities:(**Please draw the graph)

	Show your work	Please draw graph
a.	P(-1.4 < Z < 0.6)	
b.	P(Z > -1.44)	
	,	

c.	P(Z < 2.03)	
a	P(Z > 1.67)	
d.	P(Z > 1.07)	
e.	P(Z < 2.84)	
f.	P(1.14 < Z < 2.43)	

37. Find the Z scores for the following normal distribution problems.(** Please draw the graph)

38.

	Show your work	Please draw graph
a.	$\mu = 604$, $\sigma = 56.8$, $P(X \le 635)$	

b.	$\mu = 48$, $\sigma^2 = 144$, $P(X < 20)$	
υ.	$\mu = 40, 0 = 144, \Gamma(\Lambda < 20)$	
c.	$\mu = 111, \sigma = 33.8, P(100 \le X \le 150)$	
	p,, - (<u>-</u>)	
d.	$\mu = 264$, $\sigma^2 = 118.81$, $P(250 < X < 255)$	
	p 20., 0 110.01, 1 (200 (11 (200)	
e.	$\mu = 37, \sigma = 4.35, P(X > 35)$	
••	μ 37, 0 1.33, 1 (11 33)	
f.	$\mu = 156$, $\sigma = 11.4$, $P(X \ge 170)$	
1.	$\mu = 150, 0 = 11.7, 1 (X \le 170)$	
1		

39. Work problem on number 11 (a - f) on page 7-47 (a-f). (** Please draw the graph)

ECO 578 Fall 2015 Page **6** of **6**

11. The random variable x has a normal distribution with $\mu = 75$ and $\sigma = 10$. Find the following probabilities:

a)
$$P(x \le 80)$$

b)
$$P(x \ge 85)$$

c)
$$P(70 \le x \le 75)$$

d)
$$P(x > 80)$$

e)
$$P(x = 78)$$

f)
$$P(x \le 110)$$

(** Please draw the graph)

- 40. Work problem on number 3 on page 8-10.
 - 3. A random sample of 81 items is taken producing a sample mean of 47 and a sample standard deviation of 5.89. Construct a 90% confidence interval to estimate the population mean.
- 41. Work problem on number 12 on page 8-11.
 - 12. Consider the following data drawn from a normal distribution population:

Construct a 90% confidence interval for the population mean.

42. Consider the following hypothesis test

 H_o : $\mu \ge 10$

$$H_a$$
: μ < 10

A sample of 50 provides a sample mean of 9.46 and sample variation of 4.

43. Consider the following data drawn from a normal distribution population:

4 8 12 11 14 6 12 8 9 5

Construct 95% confidence interval using the above information and answer the following questions.